Grinding Titanium Alloy with Brazed Monolayer CBN Wheels

2007 ◽  
Vol 359-360 ◽  
pp. 33-37 ◽  
Author(s):  
Chang Yong Yang ◽  
Jiu Hua Xu ◽  
Wen Feng Ding ◽  
Sheng Ting Tong

This paper deals with an investigation of the grindability of Titanium alloy Ti–6Al–4V with brazed monolayer CBN grinding wheels, and systematically studies the effect of process parameters on specific energy and grinding temperature. In the investigation, a groove is machined with a brazed monolayer CBN grinding wheel, and the dimension accuracy of groove has been proved to meet the design requirements. There is no microcrack in surface layer of the groove, and the depth of work-hardening is less than 40 μm, which indicates that the grinding affected zone is small. The results show that brazed monolayer CBN grinding wheels have excellent performance during grinding titanium alloy.

2004 ◽  
Vol 471-472 ◽  
pp. 11-15 ◽  
Author(s):  
Wen Feng Ding ◽  
Jiu Hua Xu ◽  
J.B. Lu ◽  
Yu Can Fu ◽  
Bing Xiao ◽  
...  

In this paper, the disadvantages of the current CBN (Cubic Boron Nitride) grinding wheels were firstly introduced briefly, for indicating that it was very urgent and important to develop new kinds of grinding wheels with excellent performance to replace the conventional wheels. Then high temperature brazing experiments of monolayer CBN wheels with Ag-Cu-Ti filler alloy were carried out. The result shows that the filler alloy has good wetting capability towards CBN grits. The results of scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis show that, just because during brazing titanium atoms in filler alloys segregated preferentially to the surface of the CBN to form Ti-nitride or Ti-boride layer by reaction between titanium atoms and nitride and boron atoms at elevated temperature, strong chemical joining was formed in the interface between CBN grits and filler alloys. Finally, the contrastive grinding experiments were performed between the monolayer brazed CBN grinding wheels and the electroplated ones. The results show that the brazed wheels have more excellent performance than the latter.


2006 ◽  
Vol 304-305 ◽  
pp. 29-32 ◽  
Author(s):  
Hang Gao ◽  
Y.G. Zheng ◽  
W.G. Liu ◽  
Jian Hui Li

Manufacturing of vitrified bond CBN wheels for internal precision grinding of the air-conditioner compressor piston hole is still big challenge to all of the domestic manufacturers. Recently, by choosing pre-melting mixed CBN abrasives and a proper sintering process, a cost-effective method was conceived to produce grinding wheels of comparative quality. The grinding performance of wheels was evaluated with a series of internal precision grinding of compressor piston hole. Experimental results show that the vitrified bond CBN grinding wheel produced by this method has better grinding performance, and can be substitute to the same type of grinding wheels imported. But the manufacturing cost is only 60% of the wheel imported according to estimation.


2010 ◽  
Vol 42 ◽  
pp. 313-316 ◽  
Author(s):  
Jin Xue Xue ◽  
Bo Zhao

In order to investigate the influence of dressing methods on grinding temperature, two kinds of diamond grinding wheels dressed by traditional dressing(TD) and elliptic ultrasonic vibration dressing(ED) respectively were used to grind the same nano-ceramic material. Through grinding experiments, the comparative analysis of the grinding temperature was conducted. The results show that diamond grinding wheel dressed by elliptical ultrasonic vibration method can decrease the grinding temperature.


2016 ◽  
Vol 1136 ◽  
pp. 90-96 ◽  
Author(s):  
Ali Zahedi ◽  
Bahman Azarhoushang ◽  
Javad Akbari

Laser-dressing has been shown to be a promising method for overcoming some shortcomings of the conventional methods such as high wear of the dressing tool and its environmental concerns, high induced damage to the grinding wheel, low form flexibility and low speed. In this study, a resin bonded cBN grinding wheel has been dressed with a picosecond Yb:YAG laser. The efficiency of the laser-dressed grinding wheels has been compared with the conventionally dressed and sharpened grinding wheels through execution of cylindrical grinding tests on a steel workpiece (100Cr6). The conventional dressing and sharpening processes have been performed by using a vitrified SiC wheel and vitrified alumina blocks, respectively. By recording the spindle power values along with the surface topography measurements of the ground workpieces and the extraction of two roughness parameters (the average roughness Ra and the average roughness depth Rz), it is possible to provide an assessment of the cylindrical grinding process with different dressing conditions i.e. laser-dressing and conventional dressing. Accordingly, a strategy will be proposed to optimize the cylindrical grinding process with laser-dressed wheels regarding the forces and roughness values.


1999 ◽  
Vol 121 (1) ◽  
pp. 28-31 ◽  
Author(s):  
D. M. McFarland ◽  
G. E. Bailey ◽  
T. D. Howes

This research investigated the addition of flexibility into a CBN grinding wheel to suppress regenerative chatter, and illustrates some design features that should be present in such a wheel. Flexibility was added by replacing the hub of an aluminumhub CBN grinding wheel with polypropylene, decreasing the bulk stiffness to approximately 12 percent of its original value. Experiments showed that the modified wheel met the design requirements and suppressed chatter, but exhibited increased forced vibration at two frequencies. When the polypropylene between the flanges was replaced by an aluminum insert, one forced vibration disappeared. There is evidence that such a flexible wheel with a homogeneous rim would outperform a standard aluminum hub wheel.


2013 ◽  
Vol 405-408 ◽  
pp. 3302-3306
Author(s):  
Ming Yi Tsai ◽  
Shi Xing Jian ◽  
J. H. Chiang

Grinding, a technique for removing abrasive materials, is a chip-removal process that uses an individual abrasive grain as the cutting tool. Abrasive material removal processes can be very challenging owing to the high power requirements and the resulting high temperatures, especially at the workpiece-wheel interface. This paper presents a novel system that uses graphite particles impregnated in an aluminum oxide matrix to form a grinding wheel. This study specifically investigated grinding wheels with a graphite content of 0.5 wt%. The new grinding wheel was compared with conventional grinding wheels by comparing the factors of grinding performance, such as surface roughness, morphology, wheel wear ratio, grinding temperature, and grinding forces, when the wheels were used under two different coolant strategiesdry and with minimum quantity lubrication (MQL) using pure water. This study found that there is a considerable improvement in the grinding performance using graphite-impregnated grinding wheels over the performance obtained using conventional grinding wheels. The use of 0.5 wt% graphite provided better surface roughness and topography, lower grinding temperature, and decreased force; in addition, wheel consumption was lower, resulting in extended wheel life.


Author(s):  
James D. Campbell

The objective of this paper was to compare the creep feed superabrasive machining of an alpha-beta structural titanium alloy, using a water-soluble and a straight oil grinding fluid, in terms of residual stress, specific energy, power flux and microstructure. The statistical effect of process variables on these criteria was investigated using a Taguchi screening design of experiment. Grinding wheel peripheral velocity, abrasive size and fluid type were the most important factors contributing to compressive residual stress. After the depth of cut, fluid type contributed the most variation to specific energy and power flux. Both fluids produced testpieces that were microstructurally sound, and were essentially stress free or had favorable compressive residual stress.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 803-805
Author(s):  
Andrzej Kawalec ◽  
Anna Bazan

The paper presents a method of quantifying the observed wear forms of electroplated cBN grinding wheel. The volume of fractured, pulled out or smeared abrasive was determined. Three grinding wheels working with different grinding speeds were tested.


Sign in / Sign up

Export Citation Format

Share Document