Microstructure and Mechanical Properties of C/SiC Composites Prepared at Low Temperatures

2008 ◽  
Vol 368-372 ◽  
pp. 849-851
Author(s):  
Chang Cheng Zhou ◽  
Chang Rui Zhang ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
Zhi Yi Wang

2D-C/SiC composites with high performance were prepared at temperatures as low as 900 °C. The flexural strength of the composites reached 329.61MPa, the same level as the composites prepared at 1200°C, and shear strength and fracture toughness were 32.14MPa and 14.65MPa·m1/2, respectively. The microstructure and mechanical properties of the composites after heat-treatment at 1600°C were also investigated to determine the potential applications at high temperature.

2007 ◽  
Vol 336-338 ◽  
pp. 1291-1293
Author(s):  
Xin Gui Zhou ◽  
Chang Cheng Zhou ◽  
Chang Rui Zhang ◽  
Ying Bin Cao ◽  
Shi Qin Zou

3D braided carbon fiber reinforced silicon carbide (3D-Cf/SiC) composites were fabricated by precursor infiltration and pyrolysis(PIP), with carbon coatings prepared by chemical vapor deposition (CVD) before PIP. The effect of 1873K heat treatment on the mechanical properties of Cf/SiC composites were investigated. The results showed that heat treatment before PIP can increase the density of composites and lead to excellent properties of Cf/SiC composites. The flexual strength of the Cf/SiC composites with one cycle of 1873 K heat treatment reached 571 MPa, shear strength 51 MPa, and fracture toughness 18 MPa⋅m1/2.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


2008 ◽  
Vol 368-372 ◽  
pp. 1730-1732 ◽  
Author(s):  
Ping Hu ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Song He Meng ◽  
Bao Lin Wang

SiC whisker-reinforced ZrB2 matrix ultra-high temperature ceramic were prepared at 2000°C for 1 h under 30MPa by hot pressing and the effects of whisker on flexural strength and fracture toughness of the composites was examined. The flexural strength and fracture toughness are 510±25MPa and 4.05±0.20MPa⋅m1/2 at room temperature, respectively. Comparing with the SiC particles-reinforced ZrB2 ceramic, no significant increase in both strength and toughness was observed. The microstructure of the composite showed that the SiC whisker was destroyed because the SiC whisker degraded due to rapid atom diffusivity at high temperature. The results suggested that some related parameters such as the lower hot-pressing temperature, a short sintering time should be controlled in order to obtain SiC whiskerreinforced ZrB2 composite with high properties.


2011 ◽  
Vol 45 (24) ◽  
pp. 2587-2592 ◽  
Author(s):  
Jian Yang ◽  
Jiachun Zhong ◽  
Rui Zhao ◽  
Xiaobo Liu

The continuous glass fiber-reinforced polyarylene ether nitriles (PEN) composites were successfully fabricated from PEN pre-impregnated glass fabric mates and PEN films using a film-stacking method. The work involved heat treatment for crosslinking reaction of PEN, and so it provided an interesting comparison of how heat treatment can influence the properties of composites. Detailed study on heat treatments for crosslinking reaction of PEN in the catalysis of the ZnCl2 at high temperature promoting the thermal and mechanical properties of composites were also investigated. The results showed that the thermal and mechanical properties of composites were enhanced by heat treatment, which is due to the fact that PEN resins could be crosslinked by the catalytic action of ZnCl2 at high temperature and formed triazine rings with a more thermally stable structure.


2010 ◽  
Vol 658 ◽  
pp. 352-355 ◽  
Author(s):  
Hong Feng Yin ◽  
Lin Lin Lu

Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effect of processing condition on the microstructure and mechanical properties of the composites were investigated. The results showed that: (1) Hot-pressing temperature influenced the phase constituent of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature. (2) The flexural strength and fracture toughness of composites increased when the content of SiC was increased. When the SiC content was 30wt% the flexural strength and fracture toughness of Ti3SiC2/SiC composite were 371MPa and 6.9MPa•m1/2 respectively. However, when the content of SiC reached 50wt%, the flexural strength and fracture toughness of composites decreased due to high porosity in the composites. (3) The flexural strength and fracture toughness of composites increased with the particle size of SiC added in composites. (4) Ti3SiC2/SiC composites were non-brittle at room temperature.


2010 ◽  
Vol 434-435 ◽  
pp. 185-188 ◽  
Author(s):  
Xin Sun ◽  
Xing Hong Zhang ◽  
Zhi Wang ◽  
Wen Bo Han ◽  
Chang Qing Hong

Abstract. ZrB2-SiC ultra-high temperature ceramics (UHTCs) was hot-pressed at a temperature of 1900°C with the addition of carbon black as a reinforcing phase. Microstructure and mechanical properties were investigated. Analysis revealed that the amount of carbon black had a significant influence on the sinterability and mechanical properties of ZrB2-SiC ceramics. When a small amount ( < 10 vol.%) of carbon black was introduced, it may react with oxide impurities (i.e. ZrO2, B2O3 and SiO2) present on the surface of the starting powder, thus promote the densification and grain refining of ZrB2-SiC ceramics. As a result, the mechanical properties including flexural strength and fracture toughness were improved. However, with the further adoption of carbon black, mechanical properties were not improved much, which could be attributed to the redundant phase at grain boundaries. The results presented here point to a potential method for improving densification, microstructure and mechanical properties of ZrB2-based ceramic composites.


Alloy Digest ◽  
1973 ◽  
Vol 22 (2) ◽  

Abstract ALUMINUM 7075 is a wrought precipitation-hardenable aluminum alloy having excellent mechanical properties, workability and response to heat treatment and refrigeration. (This alloy is covered under its previous designation, ALUMINUM 75S, in Alloy Digest Al-5, February 1953). This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-179. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document