Electron Beam Surface Alloying of a Magnesium Alloy with Al

2008 ◽  
Vol 373-374 ◽  
pp. 326-329
Author(s):  
Hong Ye ◽  
Zhong Lin Yan

Magnesium alloy is an important engineering materials,but the wider application is restricted by poor corrosion and wear resistance. In the present study, an attempt was made to enhance corrosion resistance and microhardness of Mg alloy AZ91D by electron beam alloying. Flame spray method was used to prepare Al coating on the surface of AZ91D magnesium alloy, then remelted by high power electron beam. The microstructure and composition of the coating were analyzed in detail. Al-Mg diffusion was produced between the coating and the substrate to lead to the re-distribution of alloy elements in the melted layer. The coating was mainly composed of Al-Mg solid solution, Mg-Al intermetallic compounds and Mg-Al solid solution transition zone. Microhardness of the alloying layer was enhanced to 220 HV0.05 as compared to 70-80 HV0.05 of the substrate, due to the intermetallic phase formation, such as Mg2Al3 and Mg17Al12. These phases were good to improve anticorrosion property of AZ91D alloy.

2006 ◽  
Vol 532-533 ◽  
pp. 217-220
Author(s):  
Hong Ye ◽  
Zhong Lin Yan ◽  
Zhi Fu Sun ◽  
Ying Wang

Flame spray method was used to prepare the Al-Al2O3/TiO2 gradient coating on AZ91D magnesium alloy surface, where diffusion treatment for 2 hours at 380~420 °C was needed to reinforce the binding strength between the coating and the substrate. Appearance and compositions of the coating were analyzed by scanning electronic microscope (SEM) and electron probe microanalysis (EPMA), and the thermal shock resistance and wear resistance of the coating were tested. The result shows: Al-Mg diffusion is produced between the coating and the substrate, for good metallurgy; coating acquires high hardness and resistant to wear and thermal shock.


2014 ◽  
Vol 1077 ◽  
pp. 82-88
Author(s):  
Miroslav Jáňa ◽  
Milan Turňa ◽  
Milan Marônek ◽  
Marcel Kuruc ◽  
Pavel Bílek

Contribution deals with soldering of Mg alloy AZ31B by ternary solder ZnAl6Ag6 with ultrasonic support. Suggested solder has been analyzed from many aspects. Microstructure of solder consistutes of solid solution α-Al (FCC_Al), β-Zn (HCP_Zn) and intermetallic phases AgZn3 and AlAg3. Melting temperature of solder 386.8 °C has been determined by DSC analysis. Metallurgical process of ultrasonic soldering has run at 410 °C for 3 s. Soldered joint has been constituted by eutectic ternary structure β-Mg17(ZnAl)12, solid solution α - Mg, which contains Al and Ag elements. At solder-substrate interface, there has been formed intermetallic phase Mg2Zn11. The highest value of microhardness has been 260 HV. To predict lifetime of soldered joint, calculations in software Thermo-Calc has been performed.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1246
Author(s):  
Stefan Valkov ◽  
Dimitar Dechev ◽  
Nikolay Ivanov ◽  
Ruslan Bezdushnyi ◽  
Maria Ormanova ◽  
...  

In this study, we present the results of Young’s modulus and coefficient of friction (COF) of Ti–Ta surface alloys formed by electron-beam surface alloying by a scanning electron beam. Ta films were deposited on the top of Ti substrates, and the specimens were then electron-beam surface alloyed, where the beam power was varied from 750 to 1750 W. The structure of the samples was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Young’s modulus was studied by a nanoindentation test. The coefficient of friction was studied by a micromechanical wear experiment. It was found that at 750 W, the Ta film remained undissolved on the top of the Ti, and no alloyed zone was observed. By an increase in the beam power to 1250 and 1750 W, a distinguished alloyed zone is formed, where it is much thicker in the case of 1750 W. The structure of the obtained surface alloys is in the form of double-phase α’and β. In both surface alloys formed by a beam power of 1250 and 1750 W, respectively, Young’s modulus decreases about two times due to different reasons: in the case of alloying by 1250 W, the observed drop is attributed to the larger amount of the β phase, while at 1750 W is it due to the weaker binding forces between the atoms. The results obtained for the COF show that the formation of the Ti–Ta surface alloy on the top of Ti substrate leads to a decrease in the coefficient of friction, where the effect is more pronounced in the case of the formation of Ti–Ta surface alloys by a beam power of 1250 W.


2021 ◽  
Vol 11 (10) ◽  
pp. 4372
Author(s):  
Sergey G. Anikeev ◽  
Anastasiia V. Shabalina ◽  
Sergei A. Kulinich ◽  
Nadezhda V. Artyukhova ◽  
Daria R. Korsakova ◽  
...  

A new approach to fabricate TiNi surfaces combining the advantages of both monolithic and porous materials for implants is used in this work. New materials were obtained by depositing a porous TiNi powder onto monolithic TiNi plates followed by sintering at 1200 °C. Then, further modification of the material surface with a high-current-pulsed electron beam (HCPEB) was carried out. Three materials obtained (one after sintering and two after subsequent beam treatment by 30 pulses with different pulse energy) were studied by XRD, SEM, EDX, surface profilometry, and by means of electrochemical measurements, including OCP and EIS. Structural and compositional changes caused by HCPEB treatment were investigated. Surface properties of the samples during their storage in saline for 10 days were studied and a model experiment with cell growth (MCF-7) was carried out for the unmodified sample with an electron beam to detect cell appearance on different surface locations.


Metallurgist ◽  
2019 ◽  
Vol 63 (3-4) ◽  
pp. 295-299
Author(s):  
S. V. Akhonin ◽  
A. N. Pikulin ◽  
V. V. Klochai ◽  
A. D. Ryabtsev

2013 ◽  
Vol 749 ◽  
pp. 282-286
Author(s):  
Xian Hui Wang ◽  
Xiao Chun Sun ◽  
Xiao Hong Yang ◽  
Shu Hua Liang

The effect of heat treatment on the microstructure and properties of Cu-3Ti-1Al alloy was investigated. The microstructure was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the hardness and electrical conductivity were tested as well. The results showed that the hardness and electrical conductivity of Cu-3Ti-1Al alloy increased significantly after solid solution and ageing treatment. The strengthening effect of Cu-3Ti-1Al alloy was attributed to the formation of intermetallic phase such as Ti3Al and fine precipitates of coherent β-Cu4Ti. With increase of the aging time and the temperature, the precipitates became coarse and incoherent with Cu matrix, and the discontinuous precipitate β started to grow from grain boundaries toward grain interior, which decreased hardness. As the formation of Ti3Al, β-Cu3Ti and β-Cu4Ti phase can efficiently reduce Ti concentration in Cu matrix. The electrical conductivity of Cu-3Ti-1Al alloy increases. In the range of experiments, the optimal heat treatment process for Cu-3Ti-1Al alloy is solid solution at 850°C for 4h and ageing 500°C for 2h, and the hardness and electrical conductivity are 227HV and 12.3%IACS, respectively.


2007 ◽  
Vol 202 (4-7) ◽  
pp. 804-808 ◽  
Author(s):  
R. Zenker ◽  
G. Sacher ◽  
A. Buchwalder ◽  
J. Liebich ◽  
A. Reiter ◽  
...  

1985 ◽  
Vol 58 ◽  
Author(s):  
Robert J. Schaefer ◽  
Leonid A Bendersky

ABSTRACTElectron beam surface melting has been used to study Al-Mn and Al-Mn-Si alloys subjected to a wide range of solidification conditions. Several of the reported equilibrium intermetallic phases are not found even at moderate growth rates. Beyond a composition-dependent critical velocity the equilibrium phases are all replaced by the quasicrystalline icosahedral and decagonal (T) phases. The icosahedral phase is favored over the T phase by higher solidification velocities. The addition of Si to Al-Mn alloys eliminates the T phase, but does not significantly facilitate the formation of the icosahedral phase by electron beam melting because the ternary α and β phases of Al-Mn-Si are able to grow rapidly into the electron beam melts.


Sign in / Sign up

Export Citation Format

Share Document