Study on the Fatigue Behavior of Carbon/Carbon Composites

2008 ◽  
Vol 385-387 ◽  
pp. 537-540 ◽  
Author(s):  
Xiao Ling Liao ◽  
Wen Feng Xu ◽  
Zhi Qiang Gao

As the ideal candidates for high temperature structural materials, carbon/carbon (C/C) composites are no doubt involved in fatigue loading. Therefore, the study on fatigue behavior is meaningful. In this paper, the research on fatigue behavior of C/C composites was reviewed and the characteristic of fatigue behavior was summarized. Some viewpoints for further investigations for the study on the fatigue behavior of C/C composites are also made in this paper.

2000 ◽  
Vol 122 (3) ◽  
pp. 338-341 ◽  
Author(s):  
C. L. Briant

The use of refractory metals as high temperature structural materials has been limited in the past because of the rapid oxidation and low creep strength of the metals. Recently, a number of advances have been made in which alloying additions have improved these properties. This paper reviews these advances in the Cr-Ta and Nb-Si systems. Further needs for improvement are also described. [S0094-4289(00)01603-0]


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract MULTIMET alloy is cobalt-nickel-chromium-iron austenitic alloy having high oxidation and scaling resistance along with good high-temperature properties. It tends to work harden but does not respond significantly to age-hardening. It is made in a wrought grade (0.08-0.16% carbon) and a casting grade (0.20% max. carbon). This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SS-28. Producer or source: Haynes Stellite Company. Originally published May 1955, revised December 1961.


2017 ◽  
Vol 5 (10) ◽  
pp. 4835-4841 ◽  
Author(s):  
Pradip Pachfule ◽  
Xinchun Yang ◽  
Qi-Long Zhu ◽  
Nobuko Tsumori ◽  
Takeyuki Uchida ◽  
...  

High-temperature pyrolysis of Ru nanoparticle-encapsulated MOF (Ru@HKUST-1) afforded ultrafine Cu/Ru nanoparticle-embedded porous carbon composites (Cu/Ru@C), which show high catalytic activity for ammonia borane hydrolysis.


RSC Advances ◽  
2015 ◽  
Vol 5 (11) ◽  
pp. 8228-8235 ◽  
Author(s):  
Cong Zhang ◽  
Fanggui Ye ◽  
Shufen Shen ◽  
Yuhao Xiong ◽  
Linjing Su ◽  
...  

A magnetic nanostructured porous carbon material (γ-Fe2O3/C) was easily synthesized using a microwave-enhanced high-temperature ionothermal method with an iron terephthalate metal–organic framework-MIL-53(Fe), as a template.


2017 ◽  
Vol 17 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Chinami Fujii ◽  
Masayuki Takatera ◽  
KyoungOk Kim

AbstractWe investigated the effects of the combinations of patternmaking methods and dress forms on the appearance of a garment. Six upper garments were made using three patternmaking methods used in France, Italy, and Japan, and two dress forms made in Japan and France. The patterns and the appearances of the garments were compared using geometrical measurements. Sensory evaluations of the differences in garment appearance and fit on each dress form were also carried out. In the patterns, the positions of bust and waist darts were different. The waist dart length, bust dart length, and positions of the bust top were different depending on the patternmaking method, even when the same dress form was used. This was a result of differences in the measurements used and the calculation methods employed for other dimensions. This was because the ideal body shape was different for each patternmaking method. Even for garments produced for the same dress form, the appearances of the shoulder, bust, and waist from the front, side, and back views were different depending on the patternmaking method. As a result of the sensory evaluation, it was also found that the bust and waist shapes of the garments were different depending on the combination of patternmaking method and dress form. Therefore, to obtain a garment with better appearance, it is necessary to understand the effects of the combinations of patternmaking methods and body shapes.


2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


Sign in / Sign up

Export Citation Format

Share Document