Evolution of Relevant Parameters on Fretting Fatigue Tests

2008 ◽  
Vol 385-387 ◽  
pp. 565-568
Author(s):  
M. Buciumeanu ◽  
A.S. Miranda ◽  
F.S. Silva

The degradation process in fretting fatigue is due to mechanical and chemical attack between two contacting surfaces, being directly related to wear, corrosion and fatigue. There are many parameters that influence the fretting fatigue phenomenon out of which relative displacement, δ , normal load, n F , and tangential load t F , are the most important and consequently the most studied ones. This paper describes the fretting fatigue phenomenon occurring on a high strength aluminium alloy, Al7175. The aim of this study is to achieve a better understanding of the fretting fatigue behaviour by observing the evolution of the fatigue life of the specimen with the normal load, the tangential load and the relative displacement amplitude.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 586 ◽  
Author(s):  
Vicente Martín ◽  
Jesús Vázquez ◽  
Carlos Navarro ◽  
Jaime Domínguez

Shot peening is a mechanical treatment that induces several changes in the material: surface roughness, increased hardness close to the surface, and, the most important, compressive residual stresses. This paper analyzes the effect of this treatment on alloy Al 7075-T651 in the case of fretting fatigue with cylindrical contact through the results of 114 fretting fatigue tests. There are three independent loads applied in this type of test: a constant normal load N, pressing the contact pad against the specimen; a cyclic bulk stress σ in the specimen; and a cyclic tangential load Q through the contact. Four specimens at each of 23 different combinations of these three parameters were tested—two specimens without any treatment and two treated with shot peening. The fatigue lives, contact surface, fracture surface, and residual stresses and hardness were studied. Improvement in fatigue life ranged from 3 to 22, depending on fatigue life. The relaxation of residual-stress distribution related to the number of applied cycles was also measured. Finally, another group of specimens treated with shot peening was polished and tested, obtaining similar lives as in the tests with specimens that were shot-peened but not polished.


Author(s):  
Thomas Christiner ◽  
Johannes Reiser ◽  
István Gódor ◽  
Wilfried Eichlseder ◽  
Franz Trieb ◽  
...  

In many assemblies of moving components, contact problems under various lubrication conditions are lifetime-limiting. There, relative motion of contacting bodies, combined with high loads transmitted via the contact surface lead to fretting fatigue failure. For a reliable prediction of in service performance load type, different damage and failure mechanisms that may be activated during operation have to be known. In this contribution selected results of a currently conducted research project are presented. The aim of this study was to examine the material behaviour of a surface stressed steel. The influence of the fretting regime on fatigue properties has been investigated.


2018 ◽  
Vol 165 ◽  
pp. 16007
Author(s):  
Martin Garcia ◽  
Claudio A. Pereira Baptista ◽  
Alain Nussbaumer

In this study, the multiaxial fatigue strength of full-scale transversal attachment is assessed and compared to original experimental results and others found in the literature. Mild strength S235JR steel is used and an exploratory investigation on the use of high strength S690QL steel and the effect of non-proportional loading is presented. The study focuses on non-load carrying fillet welds as commonly used in bridge design and more generally between main girders and struts. The experimental program includes 33 uniaxial and multiaxial fatigue tests and was partially carried out on a new multiaxial setup that allows proportional and non-proportional tests in a typical welded detail. The fatigue life is then compared with estimations obtained from local approaches with the help of 3D finite element models. The multiaxial fatigue life assessment with some of the well-known local approaches is shown to be suited to the analysis under multiaxial stress states. The accuracy of each models and approaches is compared to the experimental values considering all the previously cited parameters.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


1981 ◽  
Vol 103 (3) ◽  
pp. 223-228 ◽  
Author(s):  
A. Kantimathi ◽  
J. A. Alic

Fretting fatigue tests have been conducted on 7075-T7351 aluminum alloy coupons with fretting pads of the same material. Three different stress ratios were used, the otherwise constant amplitude axial loads being interrupted every 1000 cycles by either tensile overloads to 400 MPa or compressive underloads to −200 MPa. Tensile overloads greatly prolonged fatigue life for low stresses where the overload ratios were 1.6 and above; compressive underloads had comparatively little effect. The results are discussed in terms of crack growth retardation phenomena.


Author(s):  
Melody Mojib ◽  
Rishi Pahuja ◽  
M. Ramulu ◽  
Dwayne Arola

Abstract Metal Additive Manufacturing (AM) has become a popular method for producing complex and unique geometries, especially gaining traction in the aerospace and medical industries. With the increase in adoption of AM and the high cost of powder, it is critical to understand the effects of powder recycling on part performance to move towards material qualification and certification of affordable printed components. Due to the limitations of the Electron Beam Melting (EBM) process, current as-printed components are susceptible to failure at limits far below wrought metals and further understanding of the material properties and fatigue life is required. In this study, a high strength Titanium alloy, Ti-6Al-4V, is recycled over time and used to print fatigue specimens using the EBM process. Uniaxial High Cycle Fatigue tests have been performed on as-printed and polished cylindrical specimens and the locations of crack initiation and propagation have been determined through the use of a scanning electron microscope. This investigation has shown that the rough surface exterior is far more detrimental to performance life than the powder degradation occurring due to powder reuse. In addition, the effects of the rough surface exterior as a stress concentration is evaluated using the Arola-Ramulu. The following is a preliminary study of the effects powder recycling and surface treatments on EBM Ti-6Al4V fatigue life.


2014 ◽  
Vol 891-892 ◽  
pp. 1445-1450 ◽  
Author(s):  
Michael Rethmeier

The use of advanced high strength steels (AHSS) in the automotive body-in-white is increasing. Those steels are predominantly joined by resistance spot welding. For the performance of the whole body-in-white, the fatigue behaviour is of high interest, especially as during production, weld imperfections such as cracks and manufacturing-related gaps cannot be avoided. In this study the TRIP steel HCT690 was used as it is a typical advanced high strength steel in automotive production. The investigation into the influence of cracks was split depending on the crack location in the weld area. Surface cracks in the electrode indentation area as well as in the heat affected zone were produced during welding and analyzed. The results showed that surface cracks independent of their position have no effect on the fatigue life. The produced internal imperfections have shown only a marginal impact on the fatigue life. It was ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap free shear tension samples under a load ratio R of 0.1. This fact was attributed to decreased stiffness, higher transverse vibration and higher rotation between the sheets. Furthermore, FE-simulations have shown an increase in local stresses in gapped samples.


1973 ◽  
Vol 187 (1) ◽  
pp. 295-299 ◽  
Author(s):  
J. D. Tedford ◽  
B. Crossland

The paper reports the results of fatigue tests carried out on Ford Capri wheel spindle bodies. The first three programmes were aimed at investigating the effect of the sequence in which the loads were applied in a multilevel constant-frequency block programme. A further programme was carried out to investigate the effect on the fatigue life of removing the low-load cycles from the test sequence. The first three programmes demonstrated that the sequence in which individual blocks were applied had no significant effect on the fatigue life. From the fourth programme it was concluded that the removal of stress levels equal to and less than 1·75 times the r.m.s. (root mean square) value of the normal load frequency distribution had no effect on the fatigue damage. If these stress levels are removed there is an 87 1/2 per cent reduction in testing time. The slopes of the life function curves for all four programmes were nearly identical, and gave a mean value of 6·9 which is in agreement with other workers. Lastly it was concluded that tests on small notched cantilever specimens led to very similar conclusions, and that such specimens could be used for proving and developing testing programmes.


Sign in / Sign up

Export Citation Format

Share Document