Simulation of Cutting Force in Turning Machining Process on CK7815 NC Lathe

2008 ◽  
Vol 392-394 ◽  
pp. 64-68 ◽  
Author(s):  
Yu Hong Dong ◽  
H.T. Xu ◽  
H. Lin

In order to improve NC machining precision this article analyzes the effects of cutting force on NC machining precision by means of simulation, and builds up the mathematical models of CK7815 feed drive system and radial action force of cutting feed, in order to study the effects of cutting load torque and radial cutting force on work pieces processing precision. The simulation results illustrate that cutting load torque and radial cutting force have respectively effects on axial precision and radial precision of work piece. The bigger is cutting load torque, the bigger is axial error. The smaller is cutting process coefficient and the higher is converting spring stiffness of lathe and tool, the smaller is radial error. In practice NC machining precision is improved by trying to decrease the cutting load torque and cutting process coefficient and increase converting spring stiffness.

2014 ◽  
Vol 536-537 ◽  
pp. 1431-1434 ◽  
Author(s):  
Ying Zhu ◽  
Yin Cheng Zhang ◽  
Shun He Qi ◽  
Zhi Xiang

Based on the molecular dynamics (MD) theory, in this article, we made a simulation study on titanium nanometric cutting process at different cutting depths, and analyzed the changes of the cutting depth to the effects on the work piece morphology, system potential energy, cutting force and work piece temperature in this titanium nanometric cutting process. The results show that with the increase of the cutting depth, system potential energy, cutting force and work piece temperature will increase correspondingly while the surface quality of machined work piece will decrease.


2020 ◽  
Vol 856 ◽  
pp. 43-49
Author(s):  
Santosh Kumar Tamang ◽  
Nabam Teyi ◽  
Rinchin Tashi Tsumkhapa

Machining is one of the major manufacturing processes that converts a raw work piece of arbitrary size into a finished product of definite shape of predetermined size by suitably controlling the relative motion between the tool and the work. Lately, machining process is shifting towards high speed machining (HSM) from conventional machining to improve and efficiently increase production, and towards dry machining from excessive coolant used wet machining to improve economy of production. And the tools used are mostly hardened alloys to facilitate HSM. The work piece materials are continually improving their properties by emergence and development of newer and high resistive super alloys (HRSA). In this paper an attempt has been made to validate an experimental result of cutting force obtained by performing HSM on an HRSA Inconel 718, by comparing it with the numerical result obtained by simulating the same setting using DEFORM 3D software. Based on the comparison it is found that the simulated results exhibit close proximity with the experimental results validating the experimental results and the effectiveness of the software.


2014 ◽  
Vol 701-702 ◽  
pp. 864-868
Author(s):  
Da Lin Zhang ◽  
Ke Gao ◽  
Tian Rui Zhou

Thin wall parts are used more and more extensively in industrial production, analyze the influence of precision machining of thin-walled parts not higher factor, through the example of how to improve the machining precision of thin-wall parts, and gives the specific measures to solve practical problems.


2015 ◽  
Vol 727-728 ◽  
pp. 335-338 ◽  
Author(s):  
Song Jie Yu ◽  
Di Di Wang ◽  
Xin Chen

Cutting process is a typical non-linear deformation problem, which involves material non-linear, geometry non-linear and the state non-linear problem. Based on the elastic-plastic material deformation theory, this theme established a strain hardening model. Build the simulation model of two-dimensional orthogonal cutting process of workpiece and tool by the finite element method (FEM), and simulate the changes of cutting force and the process of chip formation in the machining process, and analyzed the cutting force, the situation of chip deformation. The method is more efficient and effective than the traditional one, and provides a new way for metal cutting theory, research of material cutting performance and cutting tool product development.


2007 ◽  
Vol 329 ◽  
pp. 675-680 ◽  
Author(s):  
Sheng Fang Zhang ◽  
Zhi Hua Sha ◽  
Ren Ke Kang

During the Machining process of a part, along with the generation of new surfaces, various machining errors are produced. These machining errors depend on the characteristic of the manufacturing process system, as there are so many undetermined factors in the process system, it is very difficult to determine the machining accuracy of the workpiece. To the operator, the final accuracy of the part is very ambiguous, he can only consider the shape of the workpiece, and machining accuracy always be controlled by selecting different sets of cutting parameters. So the machining process is always time-consuming and costly. Therefore, it is very necessary to establish the accuracy predicting model to the workpiece. In this paper, According to the characteristic of turning, tool nose is abstracted into a “tangential point”, “three instantaneous centers” method is presented to get the reality shape of the workpiece. Using this method, and with the demarcating the errors in process system, the workpiece shaping model including multi-error is established. The model can not only describe the physical state of the workpiece, but also calculate the machining accuracy of the workpiece conveniently. In this paper, ‘three instantaneous centers’ method is developed to get a workpiece reality shape in turning. Using this method, the workpiece shaping model including multi-error is established. The model can not only describe the physical state of the work-piece, but also calculate the machining precision of the work-piece online.


2019 ◽  
Vol 2 (02) ◽  
pp. 19-24
Author(s):  
Kasijanto Kasijanto ◽  
Sadar Wahjudi ◽  
Listiyono Listiyono ◽  
Muhammad Fakhruddin

Metal cutting process (cutting process) is to cut metal to get the shape and size and quality of the planned cutting surface. The metal cutting process is carried out with special tools, according to the type of cutting process. So the tools for one process cannot be used in another process, even for similar processes, the tools cannot be exchanged if the cutting plans are not the same. Lathe process is a machining process to produce cylindrical machine parts which are carried out using a Lathe. Its basic form can be defined as the machining process of the outer surface of cylindrical or flat lathe objects. Polyvinyl Chloride, commonly abbreviated as PVC, is the third-order thermoplastic polymer in terms of total usage in the world, after Polyethylene (PE) and Polypropylene (PP). Worldwide, more than 50% of PVC produced is used in construction. PVC is produced by polymerizing vinyl chloride monomers (CH2 = CHCl). Because 57% of its mass is chlorine, PVC is the polymer that uses the lowest petroleum feedstock among other polymers. This research follows up the selection of configuration of the lathe machining process using plastic work pieces. In this study, Maximat V13 lathe and PVC type plastic were used. The variation of machining processes are spindle rotation (320, 540, and 900 rpm), feeding speed (0.07, 0.14, and 0.28), the use of tool types (carbide and HSS) and cooling (without cooling, coolant, and oil). So, with this research, it is expected that the optimal parameters in determining the configuration of the lathe machining process on a PVC work piece to produce a good turning surface can be achieved  


2015 ◽  
Author(s):  
Sunday J. Ojolo ◽  
Olumuwiya Agunsoye ◽  
Oluwole Adesina ◽  
Gbeminiyi M. Sobamowo

Temperature field in metal cutting process is one of the most important phenomena in machining process. Temperature rise in machining directly or indirectly determines other cutting parameters such as tool life, tool wear, thermal deformation, surface quality and mechanics of chip formation. The variation in temperature of a cutting tool in end milling is more complicated than any other machining operation especially in high speed machining. It is therefore very important to investigate the temperature distribution on the cutting tool–work piece interface in end milling operation. The determination of the temperature field is carried out by the analysis of heat transfer in metal cutting zone. Most studies previously carried out on the temperature distribution model analysis were based on analytical model and with the used of conventional machining that is continuous cutting in nature. The limitations discovered in the models and validated experiments include the oversimplified assumptions which affect the accuracy of the models. In metal cutting process, thermo-mechanical coupling is required and to carry out any temperature field determination successfully, there is need to address the issue of various forces acting during cutting and the frictional effect on the tool-work piece interface. Most previous studies on the temperature field either neglected the effect of friction or assumed it to be constant. The friction model at the tool-work interface and tool-chip interface in metal cutting play a vital role in influencing the modelling process and the accuracy of predicted cutting forces, stress, and temperature distribution. In this work, mechanistic model was adopted to establish the cutting forces and also a new coefficient of friction was also established. This can be used to simulate the cutting process in order to enhance the machining quality especially surface finish and monitor the wear of tool.


2011 ◽  
Vol 411 ◽  
pp. 398-402 ◽  
Author(s):  
Xiao Bing Gao ◽  
Yan Xue ◽  
Fu Jia Wu

CNC milling process parameters is the key issue to improve quality and productivity of product and save cost. Especially, in the end milling of the pockets, the radial depth and real feed vary as the end mill moves along the corner. This will result in the unstable of the cutting force and the bad accuracy of the milled pockets. In this paper, according to analysis of CNC machining process, the model of dynamic cutting force based on knowledge in the end milling of the pockets is established, which is predicted by the model of cutting force coefficient. The optimization milling parameters can be calculated in terms of the model of dynamic cutting force in the pockets, work piece material properties. In the end, the experiment proves the process of optimization.


2011 ◽  
Vol 223 ◽  
pp. 85-92 ◽  
Author(s):  
Balázs Tukora ◽  
Tibor Szalay

In this paper a new method for instantaneous cutting force prediction is presented, in case of sculptured surface milling. The method is executed in a highly parallel manner by the general purpose graphics processing unit (GPGPU). As opposed to the accustomed way, the geometric information of the work piece-cutter touching area is gained directly from the multi-dexel representation of the work-piece, which lets us compute the forces in real-time. Furthermore a new procedure is introduced for the determination of the cutting force coefficients on the basis of measured instantaneous or average orthogonal cutting forces. This method can determine the shear and ploughing coefficients even while the cutting geometry is continuously altering, e.g. in the course of multi-axis machining. In this way the cutting forces can be predicted during the machining process without a priori knowledge of the coefficients. The proposed methods are detailed and verified in case of ball-end milling, but the model also enables the applying of general-end cutters.


Sign in / Sign up

Export Citation Format

Share Document