Behaviour Analysis of Adhesive Joints Used in Ship Structures

2008 ◽  
Vol 399 ◽  
pp. 97-104 ◽  
Author(s):  
Ionel Chirica ◽  
Elena Felicia Beznea ◽  
Alexandru Chirica

The paper describes the results from mechanical testing and numerical analyses for the adhesive joints used in ship structures. The work undertaken in the numerical and experimental tests of different connections (steel-glass fiber polyester resin; steel - Carbon fibre epoxy) is summarized. The numerical nonlinear calculus is done due to the nonlinear properties of the adhesive and also due to the nonlinear behaviour of the adhesive joint.

1997 ◽  
Vol 503 ◽  
Author(s):  
Richard A. Pethrick ◽  
Sadanand B. Joshi ◽  
David Hayward ◽  
Zhi-Cheng Li ◽  
Steven Halliday ◽  
...  

ABSTRACTDielectric techniques have the potential of allowing observation of changes in the dipole mobility within an adhesive joint structure as a result of its exposure to a warm humid environment. Water molecules absorbed by an adhesive resin will exhibit a series of distinct relaxation features, which are characteristic of the environment in which the molecules are located. Hydration of the surface oxide of an aluminium-epoxy joint will produce a distinctive dielectric relaxation at approximately 1 MHz which is quantitatively related to the amount of hydroxide formed. Data on aged adhesive joints indicates that the dielectric technique has potential for the study of the changes occurring within the joints and the technique may be also used for studies of carbon fibre - epoxy - carbon fibre structures.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Kamil Anasiewicz ◽  
Józef Kuczmaszewski

This article is an evaluation of the phenomena occurring in adhesive joints during curing and their consequences. Considering changes in the values of Young’s modulus distributed along the joint thickness, and potential changes in adhesive strength in the cured state, the use of a numerical model may make it possible to improve finite element simulation effects and bring their results closer to experimental data. The results of a tensile test of a double overlap adhesive joint sample, performed using an extensometer, are presented. This test allowed for the precise determination of the shear modulus G of the cured adhesive under experimental conditions. Then, on the basis of the research carried out so far, a numerical model was built, taking the differences observed in the properties of the joint material into account. The stress distribution in a three-zone adhesive joint was analyzed in comparison to the standard numerical model in which the adhesive in the joint was treated as isotropic. It is proposed that a joint model with three-zones, differing in the Young’s modulus values, is more accurate for mapping the experimental results.


Author(s):  
A J Kinloch

When considering methods for joining materials, there are many advantages that engineering adhesives can offer, compared to the more traditional methods of joining such as bolting, brazing, welding, mechanical fasteners, etc. The advantages and disadvantages of using engineering adhesives are discussed and it is shown that it is possible to identify three distinct stages in the formation of an adhesive joint. Firstly, the adhesive initially has to be in a ‘liquid’ form so that it can readily spread over and make intimate molecular contact with the substrates. Secondly, in order for the joint to bear the loads that will be applied to it during its service life, the ‘liquid’ adhesive must now harden. In the case of adhesives used in engineering applications, the adhesive is often initially in the form of a ‘liquid’ monomer which polymerizes to give a high molecular weight polymeric adhesive. Thirdly, it must be appreciated that the load-carrying ability of the joint, and how long it will actually last, are affected by: (a) the design of the joint, (b) the manner in which loads are applied to it and (c) the environment that the joint encounters during its service life. Thus, to understand the science involved and to succeed in further developing the technology, the skills and knowledge from many different disciplines are required. Indeed, the input from surface chemists, polymer chemists and physicists, materials engineers and mechanical engineers are needed. Hence, the science and technology of adhesion and adhesives is a truly multidisciplined subject. These different disciplines have been brought together by developing a fracture mechanics approach to the failure of adhesive joints. The advances that have been made in applying the concepts of fracture mechanics to adhesive joints have enabled a better understanding of the fundamental aspects of adhesion and the more rapid extension of adhesives technology into advanced engineering applications.


Author(s):  
László Takács ◽  
Ferenc Szabó

AbstractPolymer sandwich structures have high bending stiffness and strength and also low weight. Therefore, they are widely used in the transportation industry. In the conceptual design phase, it is essential to have a method to model the mechanical behavior of the sandwich and its adhesive joints accurately in full-vehicle scale to investigate different structure partitioning strategies. In this paper, a novel approach using finite element modeling is introduced. The sandwich panels are modeled with layered shells and the joint lines with general stiffness matrices. Stiffness parameters of the face-sheets and the core material are obtained via mechanical tests. Stiffness parameters of the joints are determined by using the method of Design of Experiments, where detailed sub-models of the joints serve as a reference. These models are validated with experimental tests of glass-fiber reinforced vinyl ester matrix composite sandwich structure with a foam core. By using two joint designs and three reference geometries, it is shown that the method is suitable to describe the deformation behavior in a full-vehicle scale with sufficient accuracy.


2021 ◽  
Vol 9 (4) ◽  
pp. 379
Author(s):  
Sang-Gyu Lee ◽  
Daekyun Oh ◽  
Jong Hun Woo

Ship structures made of glass fiber-reinforced polymer (GFRP) composite laminates are considerably thicker than aircraft and automobile structures and more likely to contain voids. The production characteristics of such composite laminates were investigated in this study by ultrasonic nondestructive evaluation (NDE). The laminate samples were produced from E-glass chopped strand mat (CSM) and woven roving (WR) fabrics with different glass fiber contents of 30–70%. Approximately 300 pulse-echo ultrasonic A-scans were performed on each sample. The laminate samples produced from only CSM tended to contain more voids compared with those produced from a combination of CSM and WR, resulting in the relative density of the former being lower than the design value, particularly for high glass fiber contents of ≥50%. The velocity of the ultrasonic waves through the CSM-only laminates was also lower for higher glass fiber contents, whereas it steadily increased for combined CSM–WR laminates. Burn-off tests of the laminates further revealed that the fabric configuration of the combined CSM–WR laminates was of higher quality, prevented the formation of voids, and improved inter-layer bonding. These findings indicate that combined CSM–WR laminates should be used to achieve more accurate ultrasonic NDE of GFRP composite structures.


2021 ◽  
Author(s):  
GONZALO SEISDEDOS ◽  
BRIAN HERNANDEZ ◽  
JULIETTE DUBON ◽  
MARIANA ONTIVEROS ◽  
BENJAMIN BOESL ◽  
...  

Adhesive bonding has been shown to successfully address some of the main problems with traditional fasteners, such as the reduction of the overall weight and a more uniformly distributed stress state. However, due to the unpredictability of failure of adhesive bonds, their use is not widely accepted in the aerospace industry. Unlike traditional fastening methods, it is difficult to inspect the health of an adhesive joint once it has been cured. For adhesive bonding to be widely accepted and implemented, there must be a better understanding of the fracture mechanism of the adhesive joints, as well as a way to monitor the health of the bonds nondestructively. Therefore, in-field structural health monitoring is an important tool to ensure optimal condition of the bond is present during its lifetime. This project focuses on the advancement of a non-invasive field instrument for evaluation of the health of the adhesive joints. The tool developed is based on a B-H looper system where coils are arranged into a noise-cancellation configuration to measure the magnetic susceptibility of the samples with a lock-in amplifier. The B-H looper system can evaluate the state of damage in an adhesive bond by detecting changes in surface charge density at the molecular level of an epoxy-based adhesive doped with magneto-electric nanoparticles (MENs). Epoxy-based adhesive samples were doped with MENs and then scanned using the B-H looper system. To evaluate the health of the adhesive joint, microindentation and tensile tests were performed on MENs-doped adhesive samples to understand the relationship between mechanical damage and magnetic signal. Correlations between magnetic signatures and mechanical damage were minimally observed, thus future studies will focus on refining the procedure and damaging methodology.


Sign in / Sign up

Export Citation Format

Share Document