Investigations on Three-Roll Bending of Plain Tubular Components

2009 ◽  
Vol 410-411 ◽  
pp. 325-334 ◽  
Author(s):  
Marion Merklein ◽  
Hinnerk Hagenah ◽  
Massimo Cojutti

Bent metal tubes find a widespread application in many industrial sectors. Among different bending processes developed for the manufacturing of these components, three-roll bending is characterized by a high flexibility, as only one toolkit per tube diameter is necessary to form the required bending radius. In this type of forming process the part geometry is obtained by means of a relative movement of the die (setting roll) towards the fixed tools (bending and holding roll) with simultaneous feeding of the tube. This study describes the FE-model developed for the three-roll bending and presents first results of numerical investigations conducted on steel tubes made of carbon steel St37. By the FE-analysis great attention is paid on the modeling of the stiffness of the tool, on the description of the kinematics of the setting roll as well as on the characterization of the material behavior for the simulation. The results of the numerical investigations are compared with experiments conducted with a CNC-bending machine available at the Chair of Manufacturing Technology of the University of Erlangen. As a main criterion for the validation of the FE-model the radius of the tube at the extrados and the bending angle are chosen. The geometry of the part is measured by means of both optical and tactile measuring devices.

2011 ◽  
Vol 473 ◽  
pp. 937-946
Author(s):  
Ioannis Vasilakos ◽  
Jun Gu ◽  
Hans Vanhove ◽  
Hugo Sol ◽  
Joost R. Duflou

Single Point Incremental Forming (SPIF) is a modern and flexible alternative to traditional forming techniques. It thanks its flexibility to the fact that it does not require a dedicated tool set to operate. Numerical simulation of the SPIF process requires an accurate FE model. In the past several attempts have been undertaken to use inverse methods for sheet metal SPIF material model identification based on shearing, tensile and indenting tests. The basic idea of this paper is that the results of inverse methods can be improved by using the SPIF process itself as experimental data source. A SPIF experiment dedicated for material identification on a simple geometry using large step sizes is presented and compared with the FE simulation of the forming process based on an initial guess for the material behavior.


Author(s):  
Hoang Quan Tran ◽  
Henri Champliaud ◽  
Zhengkun Feng ◽  
Thien-My Dao

Roll bending is a continuous forming process where plates, sheets, beams, pipes, and even rolled shapes and extrusions are bent to a desired curvature using forming rolls. Over the years, with the advantages such as reducing setting up time, the cost in tooling investment and equipment, the roll bending process was fundamental for manufacturing cylindrical shapes. However, the process always leaves a flat area along the leading and trailing edges of the workpiece. Therefore, accuracy could be a challenge when the part to be produced is large and made of high strength steel. There are several methods to minimize the flat area. Among them, for the asymmetrical configuration, moving slightly the bottom roll along the rolling direction may have the highest effect. On the other hand local adjustment of the bottom roll location is also important for providing the pressure needed for gripping and carrying the workpiece through the rolls. Then by optimizing the vertical displacement of the bottom roll one can minimize the span of flat areas. The main objective of this research is to assess 3D dynamic Finite Element (FE) model with Ansys/LS-Dyna for the simulation and analysis of the deformation of the workpiece during the manufacturing of cylindrical parts. Various dynamic simulations based on 3D element are performed to provide better understanding of the whole deformation history and to establish the relationship between the location of the bottom roll and the end shapes of the formed cylinders. The results from FE simulations are then compared with corresponding experimental results from an industrial roll bending machine in order to improve the quality of the final shape.


2012 ◽  
Vol 560-561 ◽  
pp. 846-852 ◽  
Author(s):  
Qi Ma ◽  
Lin Hua ◽  
Dong Sheng Qian

Ring parts with small-hole and deep groove such as duplicate gear and double-side flange, are widely used in various engineering machineries. Three-roll cross rolling (TRCR) is a new advanced plastic forming technology for the processing of rings with small-hole and deep groove. In this paper, a 3D coupled thermo-mechanical FE model for TRCR of ring with small-hole and deep groove is established under ABAQUS software environment. By simulation and analysis, the evolution and distribution laws of strain and temperature in the forming process are revealed, and the effects of the key process parameters on the deformation uniformity are explored. The results provide valuable guideline for the technological parameter design and optimization.


2011 ◽  
Vol 148-149 ◽  
pp. 1319-1322
Author(s):  
Xiao Hu ◽  
Yi Sheng Zhang ◽  
Hong Qing Li ◽  
De Qun Li

Blow forming process of plastic sheets is simple and easy to realize, thus, it is widely used for plastic thin-wall parts. In the practical production, an effective method is needed for the preliminary set-up of process parameters in order to achieve accurate control of thickness distribution. Thus, a finite element method (FEM) code is used to simulate blow forming process. For better description of complex material theological characteristics, a physically based viscoelastic model (VUMAT forms Buckley model) to model the complex constitutive behavior is used. Nonlinear FE analyses using ABAQUS were carried out to simulate the blow forming process of plastic cups. The actual values at different locations show a satisfactory agreement with the simulation results: as a matter of fact the error along the cell mid-section did not exceed 0.02 mm on average, corresponding to 5% of the initial thickness, thus the FE model this paper can meet the requirements of the engineering practice.


2012 ◽  
Vol 504-506 ◽  
pp. 1029-1034 ◽  
Author(s):  
Bernd Arno Behrens ◽  
Kathrin Voges-Schwieger ◽  
Anas Bouguecha ◽  
Jens Mielke ◽  
Milan Vucetic

Sheet-bulk metal forming is a novel manufacturing technology, which unites the advantages and design solutions of sheet metal and bulk metal forming. To challenge the high forming force the process is superimposed with an oscillation in the main flow of the process. The paper focuses on the characterization of the material behavior under cyclic load and the effects for the sheet bulk metal forming process.


Author(s):  
Antonio Piccininni ◽  
Andrea Lo Franco ◽  
Gianfranco Palumbo

Abstract A warm forming process is designed for AA5754 to overcome low room temperature formability. The solution includes increased working temperature and is demonstrated with a railway vehicle component. A Finite Element (FE) based methodology was adopted to design the process taking into account also the starting condition of the alloy. In fact, the component's dent resistance can be enhanced if the yield point is increased accordingly: the stamping process was thus designed considering the blank in both the H111 (annealed and slightly hardened) and H32 (strain-hardened and stabilized) conditions that were preliminarily characterized. Tensile and formability tests were carried out at different temperature and strain rate levels, thus providing the data to be implemented within the FE model (Abaqus/CAE): the stamping was at first simulated at room temperature to evaluate the blank critical regions. Subsequently, the warm forming process was designed by means of an uncoupled thermo-mechanical approach. Thermal simulations were run to properly design the heating strategy and achieve an optimal temperature distribution over the blank deformation zone (according to the results of the material characterization). Such a distribution was then imported as a boundary condition into the mechanical step (Abaqus/Explicit) to determine the optimal process parameters and obtain a sound component (strain severity was monitored implementing an FLD-based damage criterion). The simulation model was validated experimentally with stamping trials to fabricate a sound component using the optimized heating strategy and punch stroke profile.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


Author(s):  
Suhui Wang ◽  
Chunlei Xie ◽  
Le Ye ◽  
Xin Wu

Under thermally activated deformation conditions many engineering metals (steels, aluminum and magnesium alloys) exhibit much enhanced formability; thus, thermal forming has received increasing interests by automotive industries. The thermally activated material constitutive behaviors are not only strain dependent, but also strain rate and temperature dependent, and it is sensitive to in-situ microstructure evolution. In addition, non-steady-state deformation at a high strain rate (in the order of 10−2s−1 or above) introduces additional challenges in forming simulation. In this case, von Mises based macroscopic plasticity are often not sufficient to describe material behaviors with complex thermomechanical history. In this paper, the rate-dependent crystal plasticity model [1] was applied to the high temperature and high strain rate deformation that is dominated by dislocation creep. A user material subroutine was developed and used for FEA metal forming simulation using commercial ABAQUS/Dynamic code. In the simulation, material behavior was computed based on crystal plasticity at each strain increment without using von-Mises equation or a look-up table of material testing data. By inputting different slip systems or their combinations, and by matching the predicted crystallographic textures with experimentally obtained ones, the active slip systems responsible for the deformation was identified. Then, the material parameters were best fitted to the tensile curves obtained at various strain rates and temperatures. The model was applied for more complex multi-axial metal forming processes. The material behavior, along with its crystallographic texture development, was obtained and validated. As a demonstration, this paper also provides an analysis of a newly developed thrmal forming process [2] with this meso-scale crystal plasticity approach. This forming process involves diameter expansion of a tubular workpiece under combined internal pressure and axial loading and at elevated temperatures.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Tien Dat Phan ◽  
Patrick Springer ◽  
Robert Liebich

In order to prevent critical effects due to pulsed detonation propulsion, e.g., incidence fluctuations, an elastomer-piezo-adaptive stator blade with a deformable front part is developed. Numerical investigations with respect to the interaction of fluid and structure including the piezoelectric properties and the hyperelastic material behavior of an elastomer membrane are conducted in order to investigate the concept of the elastomer-piezo-adaptive blade for developing the best suitable concept for subsequent experiments with a stator cascade in a wind tunnel. Results of numerical investigations of the structure-dynamic and fluid mechanical behavior of the elastomer-piezo-adaptive blade by using a novel fluid–structure-piezoelectric-elastomer-interaction simulation (FSPEI simulation) show that the latent danger of a laminar flow separation at the leading edge at incidence fluctuations can be prevented by using an adaptive blade. Therefore, the potential of the concept of the elastomer-piezo-adaptive blade for active flow control is verified. Furthermore, it is essential to consider the interactions between fluid and structure of the transient FSPEI simulations, since not only the deformation of the adaptive blade affects the flow around the blade, the flow has a significant effect on the dynamic behavior of the adaptive blade, as well.


2005 ◽  
Vol 475-479 ◽  
pp. 3279-3282
Author(s):  
Xia Huang ◽  
Yuan Song Zeng ◽  
Zhi Qiang Li ◽  
Xin Hua Zhang

In this paper, a new cold bending process is presented to form the titanium alloy tubular part with small relative bend radius, that is, its centerline bending radius is less than 2 times the outside diameter of the tube. FEM is applied to simulate the forming process, and at the same time the results, such as the distribution of the stress and the wall thickness, prediction of defects area, the effects of the internal pressure and friction condition on the tube deformation, are also analyzed. Finally, experimental research was preformed. It is found that the numerical results are in good agreement with the experimental values.


Sign in / Sign up

Export Citation Format

Share Document