Digital Design of the Ocean Casing Pipes Centering Equipment

2009 ◽  
Vol 419-420 ◽  
pp. 673-676
Author(s):  
Xiao Dong Xing ◽  
Li Xun Zhang ◽  
Li Quan Wang ◽  
Jun Liu

An Ocean Casing Pipes Centering Equipment is designed and implemented. Utilizing the equipment, two casing pipes can be fastened together by means of welding. The equipment can automatically carry out clamping and centering two casing pipes, and then the butt welding is conducted at their adjacent ends. In the development of this equipment, some advanced means, such as digital modelling and FEA (Finite Element Analysis), are taken full advantage of. First, all the parts’ 3D models are built with Pro/Engineer. Then, those digital parts is assembled in Pro/E assembly environments. Meanwhile, assembly interference detection is executed. Furthermore, by means of universal finite-element software,the finite element model is constructed. The strength and stiffness of the structure is calculated and analyzed so that the faults of the equipment can be found out in design stage. Through repeating this designing and verifying course, the structure of the equipment can be improved.

2014 ◽  
Vol 919-921 ◽  
pp. 64-67
Author(s):  
Ji Hong Hu ◽  
Xiu Cai Li

Taking structure strengthen of a large hotel as the engineering background, based on superposition principle, put forward the design method of concrete two-way slab strengthened with partially bonded steel plate. According to the finite element analysis, the solid finite element model is established, and then the stress, strain and deflection of two-way slab strengthened with bonded steel plate is obtained, at the meantime compared with the load test datum in situ. The analysis results show that the finite element software is a reliable tool applied to analyze the design of two-way slab strengthened with bonded steel plate. When the increasing load is larger, partially bonding steel plate strengthening has more advantage and economize than bonding carbon fiber strengthening on two-way slab, meanwhile that slab strengthened with partially bonded steel plate has better mechanical properties, strength and stiffness.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2014 ◽  
Vol 635-637 ◽  
pp. 507-510
Author(s):  
Dong Peng Du ◽  
Zhe Wu ◽  
Juan Xing ◽  
Xiao Yan Gong ◽  
Xiang Wen Miu ◽  
...  

When strong exercise on human being body, respectively, under knees 30°, 60°,90°, using PRO/E5.0 software to establish the transverse patella fracture and anti-shearing force patella claws 3D models, then the two structure models were assembled and imported into ABAQUS10.1 software to establish the finite element model of patellar fracture fixed within patella claw, and analyzed the mechanical performance in perforce finite element model. Under the same boundary conditions, the maximum displacement and deformation of each components were different at every flexion angle. Compared with anti-shearing force patella claw and AO tensile force girdle, the patella claw with stronger resistance to tension and anti-shearing force was more stable. Deformation and displacement of patella claw in accordance with biomechanical research result that is needed by clinical. Its stability will satisfy clinical requirements for functional exercise.


2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2011 ◽  
Vol 94-96 ◽  
pp. 2005-2008 ◽  
Author(s):  
Yuan Wen Cao ◽  
Xue Jiao Huang ◽  
Li Ying Ma ◽  
Sheng Qiu ◽  
Shao Xiong Gui

In this paper a dynamical equation about vibratory drum - soil system was set based on the non-linear character of vibration compaction of vibratory roller. The finite element model of vibratory drum - soil system was established by the finite element software ABAQUS, with which the vibration compaction process of vibratory drum is simulated. According to the analysis of the vibration propagation on the soil surface, the longitudinal vibration propagation of soil, the stress and strain of the soil under the vibratory drum, results have proved that it is valid to simulate the interaction between vibratory drum and soil by the nonlinear finite element method, which offered a new way to research the interaction between vibratory drum and soil.


2012 ◽  
Vol 557-559 ◽  
pp. 300-303
Author(s):  
Cheng Hong Duan ◽  
Xiang Peng Luo ◽  
Nan Zhang

In this paper, a finite element model of a composite gas cylinder was established by ABAQUS finite element software, with consideration that both heads were helically wound and their wound angle and wound thickness varied with different parallel circle radius. Stress of the composite gas cylinder and PEEQ of its liner under different working conditions after autofrettage treatment were studied, the stress distribution was assessed by the DOT CFFC standard and the effective range of autofrettage treatment was confirmed. This finite element analysis method may be referable to the design and inspection of composite gas cylinders.


2014 ◽  
Vol 580-583 ◽  
pp. 1369-1376
Author(s):  
Bin Shu ◽  
Jian He Peng

The paper aims to solve the serious and regular crack problems in underground garage. ANSYS finite element software is applied to set up the overall finite element model on floor-foundation and foundation coupling beam-foundation soil in underground garage. Combined with engineering field detection, factors influencing underground garage floor like underground water level, soil expansion caused by water content change in expansive soil, soil poisson ratio, foundation settlement are taken into consideration to find out the causes of cracks. The study is expected to provide reference for similar cases in other projects.


Sign in / Sign up

Export Citation Format

Share Document