Impact of Different Turbulence Models on Air Pollutant Flow and Distribution

2010 ◽  
Vol 439-440 ◽  
pp. 1373-1378
Author(s):  
Peng Wang ◽  
Hai Lin Mu

The aim of this study is to provide a simulation of air pollutant in a street canyon and investigates the impact of different turbulence models on the flow structure and air pollutant dispersion. Three studied k-ε turbulence models are evaluated to determine the most optimum turbulence model and the most suitable parameters of inlet boundary velocity and turbulent kinetic energy for simulating the pollutant dispersion in the present street canyon. The calculated data of the numerical model are then validated by comparing the extensive experimental database obtained from Kastner-Klein and Plate. Compared with the measured results, it can be concluded that modified RNG model with the inlet velocity profile and turbulent kinetic energy and turbulent dissipation rate provides the best calculated results, while standard and RNG k-ε turbulence models under-predict the pollutant concentrations.

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 697 ◽  
Author(s):  
Jose-Luis Santiago ◽  
Riccardo Buccolieri ◽  
Esther Rivas ◽  
Beatriz Sanchez ◽  
Alberto Martilli ◽  
...  

This paper is devoted to the quantification of changes in ventilation of a real neighborhood located in Pamplona, Spain, due to the presence of street trees Pollutant dispersion in this urban zone was previously studied by means of computational fluid dynamic (CFD) simulations. In the present work, that research is extended to analyze the ventilation in the whole neighborhood and in a tree-free street. Several scenarios are investigated including new trees in the tree-free street, and different leaf area density (LAD) in the whole neighborhood. Changes between the scenarios are evaluated through changes in average concentration, wind speed, flow rates and total pollutant fluxes. Additionally, wind flow patterns and the vertical profiles of flow properties (e.g., wind velocity, turbulent kinetic energy) and concentration, horizontally-averaged over one particular street, are analyzed. The approach-flow direction is almost perpendicular to the street under study (prevailing wind direction is only deviated 4º from the perpendicular direction). For these conditions, as LAD increases, average concentration in the whole neighborhood increases due to the decrease of wind speed. On the other hand, the inclusion of trees in the street produces an increase of averaged pollutant concentration only within this street, in particular for the scenario with the highest LAD value. In fact, the new trees in the street analyzed with the highest LAD value notably change the ventilation producing an increase of total pollutant fluxes inward the street. Additionally, pollutant dispersion within the street is also influenced by the reduction of the wind velocity along the street axis and the decrease of turbulent kinetic energy within the vegetation canopy caused by the new trees. Therefore, the inclusion of new trees in a tree-free street should be done by considering ventilation changes and traffic emissions should be consequently controlled in order to keep pollutant concentration within healthy levels.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 691
Author(s):  
Peng Lin ◽  
Yan Jin ◽  
Fu Yang ◽  
Ziyu Liu ◽  
Rundong Jing ◽  
...  

In continuous casting, the nozzle position may deviate from the center under actual operating conditions, which may cause periodic fluctuation of the steel-slag interface and easily lead to slag entrapment and gas absorption. Swirling nozzles can reduce these negative effects. A mathematical simulation method based on a round mold of steel components with a 600 mm diameter is applied to study the flow field of molten steel in a mold. The swirling nozzle is optimized through the establishment of a fluid dynamics model. Meanwhile, a 1:2 hydraulic model is established for validation experiments. The results show that, when the submerged entry nozzle (SEN) is eccentric in the mold, it results in serious bias flow, increasing the drift index in the mold up to 0.46 at the eccentric distance of 50 mm. The impact depth of liquid steel and turbulent kinetic energy can be decreased by increasing the rotation angle of the nozzle. The nozzle with one bottom hole, which significantly decreases the bottom pressure and turbulent kinetic energy, greatly weakens the scour on nozzle and surface fluctuation. In the eccentric casting condition, using the optimized swirling nozzle that employs a 5-fractional structure, in which the rotation angle of 4 side holes is 30° and there is one bottom outlet, can effectively restrain bias flow and reduce the drift index to 0.28, a decline of more than 39%.


2020 ◽  
pp. 2150083
Author(s):  
Chao Liu ◽  
Hongxun Chen ◽  
Zhengchuan Zhang ◽  
Zheng Ma

In order to reveal the operating characteristics of the pumpjet propulsor, standard [Formula: see text]–[Formula: see text], standard [Formula: see text]–[Formula: see text], RNG [Formula: see text]–[Formula: see text] and SST [Formula: see text]–[Formula: see text] turbulence models were used to conduct steady calculation for the whole flow channels. By comparing the calculation results with experimental data, it was found that the calculation errors were very large in some operating conditions. Therefore, the uncertainty analysis was carried out at all operating conditions of the pumpjet propulsor and the error source was finally determined that it is mainly derived from the model error. Then, the applicability of different turbulence models was analyzed to numerical simulation for the pumpjet propulsor by comparing the internal and external characteristics. It can be seen that the strong turbulent kinetic energy in the guide vane will inevitably cause energy loss, but not necessarily in the impeller. In this area, the increase of turbulent kinetic energy will enhance the mixing and transport of fluids, and the impeller makes the fluids get more energy. In addition, a modified hybrid Reynolds Average Numerical Simulation/Large Eddy Simulation (RANS/LES) model was proposed for unsteady calculation, and the performances, internal flow states and the interaction between the pump and the outer region were further revealed under various conditions of the pumpjet propulsor, which provides some references for predicting accurately and selecting conditions optimally in the future.


2019 ◽  
Vol 1 (2) ◽  
pp. 265-282
Author(s):  
Marta Puzdrowska ◽  
Tomasz Heese

The paper presents an analysis the spatial distribution of turbulent kinetic energy (TKE) for bolt fishways, including the impact of additional spillway slots and fixed channel development. The research was done for two models, each containing a different arrangement of slots. The presented results of research for bolt fishways were obtained as an effect of laboratory tests. The measurements were done for three components of instant flow velocity magnitude (speed). Analysis of the results was done for a 3D flow structure using Matlab software. In the case of bolt fishways, significant differences were noted for the method of velocity and TKE distribution, in reference to research comprising channels with biological development. It was stated that a reason for this is the flexible development of the channel. The occurrence of extreme TKE values in the chamber (pool) is strictly associated with the characteristics of interaction zones between various flow structures. It was also stated that the lower the parapet of the slot’s spillway shelf is in the fishway’s partition, the higher TKE could be expected just downstream of the section. These establishments may be important for the designing process in the case of fish passes of various types of construction.


2013 ◽  
Vol 8 (2) ◽  
pp. 119-127 ◽  
Author(s):  
D. K. Chibwe ◽  
G. Akdogan ◽  
P. Taskinen

Abstract Typical current operation of lateral-blown Peirce-Smith converters (PSCs) has the common phenomenon of splashing and slopping due to air injection. The splashing and wave motion in these converters cause metal losses and potential production lost time due to intermittent cleaning of the converter mouth and thus reduced process throughput. Understanding of the effect of combined top and lateral blowing could possibly lead to alternative technology advancement for increased process efficiency. In this study, computational fluid dynamics (CFD) simulations of conventional common practice (lateral blowing) and combined (top and lateral blowing) in a PSC were carried out, and results of flow variables (bath velocity, turbulence kinetic energy, etc.) were compared. The two-dimensional (2-D) and three-dimensional (3-D) simulations of the three-phase system (air–matte–slag) were executed utilizing a commercial CFD numerical software code, ANSYS FLUENT 14.0. These simulations were performed employing the volume of fluid and realizable turbulence models to account for multiphase and turbulent nature of the flow, respectively. Upon completion of the simulations, the results of the models were analysed and compared by means of density contour plots, velocity vector plots, turbulent kinetic energy vector plots, average turbulent kinetic energy, turbulent intensity contour plots and average matte bulk velocity. It was found that both blowing configuration and slag layer thickness have significant effects on mixing propagation, wave formation and splashing in the PSC as the results showed wave formation and splashing significantly being reduced by employing combined top- and lateral-blowing configurations.


2010 ◽  
Vol 37 (4) ◽  
pp. 648-656 ◽  
Author(s):  
Ahmad Sana ◽  
Hitoshi Tanaka

A total of seven versions of two-equation turbulence models (four versions of low Reynolds number k–ε model, one k–ω model and two versions of k–ε / k–ω blended models) are tested against the direct numerical simulation (DNS) data of a one-dimensional oscillatory boundary layer with flat crested free-stream velocity that results from a steep pressure gradient. A detailed comparison has been made for cross-stream velocity, turbulent kinetic energy (TKE), Reynolds stress, and ratio of Reynolds stress and turbulent kinetic energy. It is observed that the newer versions of k–ε model perform very well in predicting the velocity, turbulent kinetic energy, and Reynolds stress. The k–ω model and blended models underestimate the peak value of turbulent kinetic energy that may be explained by the Reynolds stress to TKE ratio in the logarithmic zone. The maximum bottom shear stress is well predicted by the k–ε model proposed by Sana et al. and the original k–ω model.


Sign in / Sign up

Export Citation Format

Share Document