Effects of Substrate Bias Voltages on the Erosion Wear Resistance of TiN Coatings Deposited by Pulsed Filtered Vacuum Cathode Arc Deposition

2010 ◽  
Vol 443 ◽  
pp. 481-486 ◽  
Author(s):  
Feng Fang Wu ◽  
Jian Xin Deng ◽  
Pei Yan

TiN coatings were produced on substrates of a hard metal at different bias by pulsed filtered vacuum cathode arc deposition assisted with ion bombardment. The erosion wear resistance of TiN coatings was investigated. The erosion wear was tested with a gas blast apparatus. In the test, TiN coatings were impacted at an impingement angle of 90° by angular SiC solid particles with an average diameter of 124um. The maximum depth of the erosion scar measured by the Veeco NT9300 optical profiler was used to evaluate the erosion wear loss of the coatings. The coatings proved to have lower erosion rate than the substrate material and consequently, the erosion rate increased significantly to the high level of the hard metal substrate after the coatings were penetrated. The results indicated that the TiN coating deposited at 150V bias had the lowest erosion wear rate and best wear resistance. The failure mechanism was revealed by examining the surface morphology of the coatings before and after the erosion test. The erosion wear of the TiN coatings behaved as typical brittle materials.

2010 ◽  
Vol 97-101 ◽  
pp. 1527-1531 ◽  
Author(s):  
Feng Fang Wu ◽  
Jian Xin Deng ◽  
Pei Yan ◽  
Wen Long Song

The erosion wear behavior of TiN coatings with growth defects was studied. The TiN coatings were produced on a hard metal by ion beam enhanced pulsed filtered vacuum cathode arc deposition. The erosion wear was tested with a gas blast apparatus. In the test, TiN coatings were impacted at an impingement angle of 90° by angular SiC solid particles with an average diameter of 124um. The maximum depth of the erosion scar measured by the optical profiler was used to evaluate the erosion wear loss of the coatings. The coatings proved to have much lower erosion rate than that of the substrate material and consequently, the erosion rate increased significantly to the high level of the hard metal substrate after the coatings were penetrated. The failure mechanism was revealed by examining the surface morphologies of the coatings before and after the erosion test. The erosive wear of the TiN coatings with growth defects behaved as typical brittle materials. The damage mechanism of the coatings with growth defects was described.


2010 ◽  
Vol 44-47 ◽  
pp. 2390-2393 ◽  
Author(s):  
Feng Fang Wu ◽  
Jian Xin Deng

The erosion wear resistance of TiAlCrN coating on a hard metal deposited using unbalanced magnetron sputtering technique was investigated by comparison with that of the TiN coating deposited by filtered vacuum arc deposition. SEM was used for observing the surface morphologies of coatings both the un-eroded and eroded. Scratch test was used to evaluate the adhesion of the coatings. The erosion wear was tested with a gas blast apparatus at room temperature. In the test, the coatings were impacted at an impingement angle of 90° by angular SiC solid particles with an average diameter of 124um. The maximum depth of the erosion scar measured by the optical profiler was used to evaluate the erosion wear loss of the coatings. TiAlCrN coating proved to have much lower erosion rate than TiN coating. Different from the typical brittle erosion behavior of TiN coating, the TiAlCrN coating behaved like a semi-brittle material.


2011 ◽  
Vol 675-677 ◽  
pp. 1271-1274
Author(s):  
Feng Fang Wu ◽  
Jian Xin Deng

TiAlCrN coating was deposited on a stainless steel using unbalanced magnetron sputtering technique. The erosion wear resistance of the TiAlCrN coating was investigated by comparison with that of the TiN coating deposited by filtered vacuum arc deposition. SEM was used for observing the surface morphologies of coatings both the un-eroded and eroded. Scratch test was used to evaluate the adhesion of the coatings. The erosion wear was tested with a gas blast apparatus at room temperature. In the test, the coatings were impacted at an impingement angle of 90° by angular SiC solid particles with an average diameter of 124um. The maximum depth of the erosion scar measured by the optical profiler was used to evaluate the erosion wear loss of the coatings. TiAlCrN coating proved to have much lower erosion rate than TiN coating. Unlike TiN coating, the TiAlCrN coating behaved like semi-brittle material.


Author(s):  
Stephen Miska ◽  
Siamack A. Shirazi ◽  
Brenton S. McLaury ◽  
Yongli Zhang ◽  
Edmund F. Rybicki ◽  
...  

In the production and pipeline transport of various fluids, such as oil and natural gas, solid particles may be entrained in the fluid. These particles, commonly consisting of numerous types and sizes of sand, can travel apart from the streamlines of the fluid and impact the surface of the pipe. With time, enough particles may impinge a pipe wall at a sensitive location, such as an elbow or tee, to result in a measurable wall thickness loss. This may ultimately lead to severe erosion damage causing a leak in a pipeline, a dangerous and costly problem. As a result, a pipeline’s service life may often depend on the rate at which a pipe wall is eroded. The erosion rate, or amount of material loss over a certain time period, depends on a large number of factors. The target material, or material experiencing a thickness loss, such as a pipe wall, influences the rate at which damage occurs. Its density, hardness, yield strength, and microstructure combine to present a certain resistance toward erosion occurring from solid particle impact. Furthermore, the solid particle’s diameter, sharpness, and shape will influence its trajectory, speed, and momentum transfer into the target, thereby requiring the analysis of various particle types in predicting erosion. Finally, the carrier fluid being transported through a pipeline will further affect the solid particle’s movement as it approaches the target. As a result, the fluid’s density and viscosity must be carefully considered in particle tracking and erosion analysis. By considering the aforementioned properties of the target, solid particles, and carrier fluid, it is desirable to be able to predict the erosion rate from a single erosion equation. Other factors depending on these properties may be found in this expression, such as particle impact speed and impingement angle at the target. Velocity measurements by way of Laser Doppler Velocimetry (LDV) were made for particles entrained in a viscous liquid traveling in a submerged, direct impingement jet. In an attempt to obtain representative particle impact characteristics during material erosion, data was collected from the nozzle exit to the target surface in order to track fluid and particle velocities prior to impact with a wall. Average particle sizes of 120 and 550 μm were used to represent typical sand sizes, while much smaller particles with an average diameter of 3 μm were utilized in fluid velocity measurements. The carrier fluid viscosity was varied from 1 to 100 centiPoise, while the nozzle flow rate and fluid density were maintained constant. Changes in approach and estimated impingement velocity occurring due to fluid viscosity and particle size are then presented. For the same impingement geometry and flow situations, metal loss erosion measurements have been made by way of an Electrical-Resistance (ER) probe. Oklahoma #1 sand particles with an average diameter of 150 μm were suspended in a viscous carrier fluid at a measured sand concentration. The measured erosion rate and particle velocities at near target wall locations are then compared to observe the effect of viscosity on material erosion and impact speed. Particle tracking and erosion predictions made by Computational Fluid Dynamics (CFD) can then be experimentally validated.


2019 ◽  
Vol 813 ◽  
pp. 135-140
Author(s):  
Eugenia Laura Dalibon ◽  
Amado Cabo ◽  
Jorge Halabi ◽  
Ramiro D. Moreira ◽  
Kevin Silva ◽  
...  

TiN coatings are widely used in different applications for extending the lifetime of components due to their high hardness and good wear resistance. However, it is not convenient to deposit them on soft stainless steels. In this work, the wear and corrosion behavior of commercial TiN coatings deposited by Arc-PVD on nitrided and non-nitrided martensitic stainless steel was studied. Two different nitriding conditions were used, one at high temperature (HTN) and the other at low temperature (LTN). Nanohardness and microhardness were measured. The microstructure was characterized by OM, SEM, XRD and XPS. Pin on disk and erosion tests were carried out in order to evaluate their wear resistance. The corrosion behavior was analyzed in salt spray fog and electrochemical tests in NaCl solution and the adhesion was measured in Scratch and Rockwell C Indentation tests.The coating thickness was about 1.5 µm and its hardness of 34 GPa. The nitrided layers were 13 µm and 17 µm thick for LTN and HTN, the hardness was approximately 12 GPa for both nitrided samples. The nitrided layer improved TiN coating adhesion in the Scratch tests. The wear loss volume was similar for both duplex and only coated samples in pin on disk tests. Nevertheless, wear resistance was not good for the LTN or HTN + TiN coating system in the erosion tests. Regarding corrosion behavior, the coatings showed poor corrosion resistance and this could be related to the presence of porous defects, which allow the solution to reach and attack the substrate, thus producing coating detachment around the pits.


10.14311/1031 ◽  
2008 ◽  
Vol 48 (4) ◽  
Author(s):  
T. Jirout ◽  
I. Fořt

This paper reports on a study of the erosion wear mechanism of the blades of pitched blade impellers in a solid-liquid suspension in order to determine the effect of the impeller speed n as well as the concentration and size of the solid particles on its wear rate. A four-blade pitched blade impeller (pitch angle α = 30°), pumping downwards, was investigated in a pilot plant fully baffled agitated vessel with a water suspension of corundum. The results of  experiments show that the erosion wear rate of the impeller blades is proportional to n2.7 and that the rate exhibits a monotonous dependence (increase) with increasing size of the particles. However, the erosion rate of the pitched blade impellerreaches a maximum at a certain concentration, and above this value it decreases as the proportion of solid particles increases. All results of the investigation are valid under a turbulent flow regime of the agitated batch.


2008 ◽  
Vol 4 (1) ◽  
pp. 1-26
Author(s):  
Gábor Kalácska

Research was performed on the friction, wear and efficiency of plastic gears made of modern engineering polymers and their composites both in a clean environment (adhesive sliding surfaces) and in an environment contaminated with solid particles and dust (abrasive), with no lubrication at all. The purpose is to give a general view about the results of abrasive wear tests including seven soil types as abrasive media. At the first stage of the research silicious sand was applied between the meshing gears and the wear of plastic and steel gears was evaluated and analyzed from the point of different material properties (elongation at break, hardness, yield stress, modulus of elasticity) and its combinations. The different correlations between the experienced wear and material features are also introduced. At the second stage of the project the abrasive sand was replaced with different physical soil types. The abrasive wear of gears is plotted in the function of soil types. The results highlight on the considerable role of physical soil types on abrasive wear resistance and the conclusions contain the detailed wear resistance. The results offer a new tribology database for the operation and maintenance of agricultural machines with the opportunity of a better material selection according to the dominant soil type. This can finally result longer lifetime and higher reliability of wearing plastic/steel parts.


2017 ◽  
Vol 17 (1) ◽  
pp. 143-146 ◽  
Author(s):  
S. Sobula ◽  
E. Olejnik ◽  
T. Tokarski

Abstract Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.


Sign in / Sign up

Export Citation Format

Share Document