The Simulation on Pro/e of Blique Plane Double-Enveloping Worm Gear

2010 ◽  
Vol 455 ◽  
pp. 388-391
Author(s):  
Yue Min Zhang ◽  
S. Lu ◽  
Gang Xie

A reasonable coordinate system of planar double-enveloping worm is set up. The curve surface structure of worm gear were been analysis. The curve surfaces have been initiated by the program with MATLAB and numerical model has been drawn. The 3D solid model and motion simulation of planar double-enveloping worm gear have been emulated with the software of Pro / e.

2011 ◽  
Vol 219-220 ◽  
pp. 341-345
Author(s):  
Sheng Min Zhang ◽  
Wan Qiang Chu ◽  
Xin Fa Dong

The paper introduces some effective methods to solve the problems of solid modeling with the software of AutoCAD. Make good use of views to avoid converting UCS frequently and set up proper layers aimed to the building or structure and draw solid in order to control the display of different parts of solid. According to analysis and research on 3D solid model, the authors also point out other techniques, such as the skills about Boolean Calculation and conclude that different operation sequence produces different result and sometimes don't need to input a data and also complete to cut of solid. These skills are helpful to make solid model.


Aerospace ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 138
Author(s):  
Giuseppe Gallo ◽  
Adriano Isoldi ◽  
Dario Del Gatto ◽  
Raffaele Savino ◽  
Amedeo Capozzoli ◽  
...  

The present work is focused on a detailed description of an in-house, particle-in-cell code developed by the authors, whose main aim is to perform highly accurate plasma simulations on an off-the-shelf computing platform in a relatively short computational time, despite the large number of macro-particles employed in the computation. A smart strategy to set up the code is proposed, and in particular, the parallel calculation in GPU is explored as a possible solution for the reduction in computing time. An application on a Hall-effect thruster is shown to validate the PIC numerical model and to highlight the strengths of introducing highly accurate schemes for the electric field interpolation and the macroparticle trajectory integration in the time. A further application on a helicon double-layer thruster is presented, in which the particle-in-cell (PIC) code is used as a fast tool to analyze the performance of these specific electric motors.


Author(s):  
Cheng-Wei Huang ◽  
Ran-Zan Wang ◽  
Shang-Kuan Chen ◽  
Wen-Pin Fang
Keyword(s):  

2011 ◽  
Vol 2-3 ◽  
pp. 924-927
Author(s):  
An Yuan Jiao ◽  
Feng Hui Wang

A kind of new steel coil upender clamping device was designed. The model was set up by use of SolidWorks and the reliability analysis and motion simulation was further performed in ADAMS. Because of risk at steel coil upender, once the accident appears, it gently slowed-up production and damaged the device, and it could cause people’s dying vitally, it is especially important to assure the longtime work and safety of device which we studied on. The results showed that the efficiency of turnover process of the device was high and the system could save driving force. These also provided some theory bases for the design of the device.


Author(s):  
L. Truong-Hong ◽  
N. Nguyen ◽  
R. Lindenbergh ◽  
P. Fisk ◽  
T. Huynh

Abstract. This paper proposes a methodology to automatically extract components of an oil storage tank from terrestrial laser scanning (TLS) point clouds, and subsequently to create a three-dimensional (3D) solid model of the tank for numerical simulation. The proposed method is integrated into a smart analysis layer of a digital twin platform consisting of three main layers: (1) smart analysis, (2) data storage, and (3) visualisation and user interaction. In this proposed method, primary components of the tank were automatically extracted in a consecutive order from a shell wall to roof and floor. Voxel-based RANSAC is employed to extract voxels containing point clouds of the shell wall, while a valley-peak-valley pattern based on kernel density estimation is implemented to remove outlier points within voxels representing to the shell wall and re-extract data points within voxels adjoined to the shell wall. Moreover, octree-based region growing is employed to extract a roof and floor from remaining point clouds. An experimental showed that the proposed framework successfully extracted all primary components of the tank and created a 3D solid model of the tank automatically. Resulting point clouds of the shell wall were directly used for estimating deformation and a 3D solid model was imported into finite element analysis (FEA) software to assess the tank in terms of stress-strain. The demonstration shows that TLS point clouds can play an important role in developing the digital twin of the oil storage tank.


2015 ◽  
Vol 789-790 ◽  
pp. 873-877 ◽  
Author(s):  
Phung Xuan Lan ◽  
Hoang Vinh Sinh

This paper presents an effective rule-based method for extracting and recognizing the machining features from 3D solid model. The machining feature is automatically recognized while considering the relationship between machining feature and machining process. This proposed method is capable of recognizing not only prismatic machining features but also multi-axis machining features from many kinds of complex design features in both protrusion and depression. It also succeeds in recognizing various types of interaction in a uniform way. The capability of the proposed method is demonstrated in one specific case study.


2015 ◽  
Vol 19 ◽  
pp. 62-69 ◽  
Author(s):  
Mojtaba Zeraatkar ◽  
Khalil Khalili ◽  
Abolfazl Foorginejad
Keyword(s):  

2019 ◽  
Vol 969 ◽  
pp. 231-236
Author(s):  
Chandan Kumar ◽  
Nilamber Kumar Singh

A comparative study of three different aluminium alloys, Al2618, Al4032 and Al6061 made internal combustion engine pistons is done on their responses under mechanical and thermal loads using finite element methods. In this study, a 3D solid model of piston is created in CATIA and the simulations of the static structural analysis, steady-state thermal analysis and transient thermal analysis are carried out in ANSYS. Stress and temperature distributions on critical areas of piston are pointed out for appropriate modification in piston design. The temperature and heat flux variations with time are presented in transient thermal analysis. Taguchi method and topological optimization are applied to optimize the process parameters and to select the appropriate material for the piston.


2011 ◽  
Vol 88-89 ◽  
pp. 697-702
Author(s):  
Hong Sheng Zhao ◽  
Ya Xian Wu ◽  
Yun Zhen Wu

This paper presents a new approach to reconstructing 3D solid model from the two given 2D orthographic views based on AutoCAD, which is much more effective and high efficient for a special kind of compound object than the currently existing ways. The approach emphasizes integrated operating of AutoCAD software and basic knowledge of engineering drawing with no needs for complicated computation and 3D rich imagination and reconstruction. Using this approach, the 3D solid model can be reconstructed effectively and efficiently from the two given 2D orthographic views by several steps of simple operation on computer on the basis of judgment. The research work provides a theoretical possibility for the automatic reconstruction of 3D Solid model of such compound objects, and a simple and practical 3D solid model-reconstructing method for engineers and learners of engineering drawing.


Author(s):  
Jayaram R. Pothnis ◽  
Dinesh Kalyanasundaram ◽  
Suhasini Gururaja

Numerical and experimental studies performed to develop nanocomposites with varying carbon nanotube (CNT) alignment density within an epoxy matrix are presented. A 3-D numerical model has been developed that looks at the behavior of CNTs in epoxy resin subjected to non-uniform electric fields by explicitly accounting for electric field coupled with fluid flow and particle motion considering the transient resin viscosity. The transient nature of resin viscosity has been incorporated into the simulation study with data related to resin viscosity variation with time and temperature generated experimentally. The response of CNTs due to the induced dielectrophoretic force was studied using the numerical model. The model facilitated the design of an optimal electrode configuration for the processing of variable density composites. A computer controlled Arduino UNO based circuitry was developed to control supply of voltage to the electrodes during sample fabrication. The circuit was then integrated with AC voltage supply units and the electrode set-up for fabricating the variable density composite samples. Low weight fractions of CNTs (0.05 wt.% and 0.1 wt.%) in epoxy resin were used for the experimental work and preliminary experimental studies were conducted. Electrical characterization results of the variable density nanocomposites indicate over 100% and 30% increase in electrical resistance measured across sample widths in 0.05 wt.% and 0.1 wt.% CNT samples, respectively. The measured sample resistance values confirmed that variation in CNT alignment density was achieved across the samples.


Sign in / Sign up

Export Citation Format

Share Document