LiCF3SO3 – CeO2 Composite Electrolytes Prepared by Sol-Gel Technique: Structural and Conductivity Studies

2011 ◽  
Vol 471-472 ◽  
pp. 274-278 ◽  
Author(s):  
N.A. Dzulkurnain ◽  
Mohamed Nor Sabirin

(100-x) LiCF3SO3 + (x) CeO2 composite electrolytes were prepared using sol-gel technique followed by sintering at 300 °C for four hours. Structural property and conductivity of the prepared composite electrolytes were studied using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray (EDX) analysis and Impedance Spectroscopy. The XRD spectra show only crystalline peaks of CeO2 indicating that LiCF3SO3 exists in the form of amorphous phase. This is confirmed by SEM and EDX analyses. The highest ionic conductivity at room temperature is found to be in the order of 10-3 S cm-1 for the composite of 70 mol % LiCF3SO3 - 30 mol % CeO2. The conductivity of the composite electrolytes is observed to increase gradually with temperature.

1998 ◽  
Vol 541 ◽  
Author(s):  
M. Linnik ◽  
O. Wilson ◽  
A. Christou

AbstractThe preparation and characterization of thick PLZT films for spatial phase modulator applications are reported. Films were fabricated on LSCO/LAO substrates by a sol-gel technique using multiple heat-treatment parameters. The crystal quality of PLZT 9/65/35 films was investigated by X-ray diffraction and scanning electron microscopy.


2012 ◽  
Vol 531-532 ◽  
pp. 614-617 ◽  
Author(s):  
Gunawan ◽  
I. Sopyan ◽  
A. Naqshbandi ◽  
S. Ramesh

Biphasic calcium phosphate powders doped with zinc (Zn-doped BCP) were synthesized via sol-gel technique. Different concentrations of Zn have been successfully incorporated into biphasic calcium (BCP) phases namely: 1%, 2%, 3%, 5%, 7%, 10% and 15%. The synthesized powders were calcined at temperatures of 700-900°C. The calcined Zn-doped BCP powders were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential and thermogravimetric analysis (TG/DTA) and field-emission scanning electron microscopy (FESEM). X-ray diffraction analysis revealed that the phases present in Zn-doped are hydroxyapatite, β- TCP and parascholzite. Moreover, FTIR analysis of the synthesized powders depicted that the bands of HPO4 increased meanwhile O-H decreased with an increase in the calcination temperature. Field emission scanning electron microscopy (FESEM) results showed the agglomeration of particles into microscale aggregates with size of the agglomerates tending to increase with an increase in the dopant concentration.


2015 ◽  
Vol 814 ◽  
pp. 39-43 ◽  
Author(s):  
Lei Lei Chen ◽  
Hong Mei Deng ◽  
Ke Zhi Zhang ◽  
Ling Huang ◽  
Jian Liu ◽  
...  

Cu2MnSnS4 thin film was successfully prepared by a sol-gel technique on soda lime glass substrate from metal salts and thiourea. The structural and morphological properties of the fabricated film were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The combination of the X-ray diffraction results and Raman spectroscopy reveal that this obtained layer is composed by Cu2MnSnS4 phase and has a stannite structure with preferential orientation along the (112) direction. The scanning electron microscopy and atomic force microscopy results show that the synthesized thin film is smooth and compact without any visible cracks or pores. The band gap of the Cu2MnSnS4 thin film is about 1.29 eV determined by the UV-vis-NIR absorption spectra measurement, which indicates it has potential applications in solar cells.


2010 ◽  
Vol 177 ◽  
pp. 257-259
Author(s):  
Shu Fang Zheng ◽  
Guo Xuan Xiong ◽  
Hai Qing Huang ◽  
Liu Jun Luo

Nano-porous Barium ferrite (BaFe12O19) nanoparticles were synthesized by sol-gel technique using CTAB as template. The structure, morphology, and magnetic properties of samples were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results show that particles size are about 45 nm to 65 nm. And the nanoparticles show a saturation magnetization (Ms) of 62.831 emu/g, a coercivity (Hc) of 5481.0 Oe and a remament magnetization (Mr) of 33.083 emu/g.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2012 ◽  
Vol 476-478 ◽  
pp. 2059-2062
Author(s):  
Chen Wang ◽  
Ya Dong Li ◽  
Gu Qiao Ding

Tributyl borate was first adopted for the introduction of boron in the preparation of bioactive borosilicate xerogel by sol-gel method. The xerogel reacted continuously in 0.25M K2HPO4 solution with a starting pH value of 7.0 at 37 °C for 1day. The structural, morphologies and compositional changes resulting from the conversion were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that speed of formation of HA was cut way back on the time with the addition of boron and the induction period for the HA nucleation on the surface of the borosilicate xerogel was short than 1 days. The conversion mechanism of the borosilicate xerogels to hydroxyapaptite was also discussed.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


High purity barium titanate BaTiO3 was successfully synthesized by using the sol-gel technique. Barium acetate Ba(CH3COO)2 and tetrabutyl titanate, Ti(C4H9O)4 was dissolved moderately in the solvent of glacial acetic acid and ethanol was added as the chemical modifier. The synthesized BaTiO3 nanoparticle was calcined at the temperature range of 700 ºC to 1100 ºC. The powders were further characterized by X-ray diffraction and scanning electron microscopy (SEM). Fined BaTiO3 powders result indicates the phase of tetragonal structures and high crystallites of BaTiO3. It was observed that the crystallinity and particle size of BaTiO3 is greatly influenced by the calcination temperature.


Sign in / Sign up

Export Citation Format

Share Document