Assessment of Damage Models in Sheet Metal Forming for Industrial Applications

2011 ◽  
Vol 473 ◽  
pp. 482-489
Author(s):  
Maria Doig ◽  
Karl Roll

Due to increasing demands to reduce C02-emission and to augment occupant’s safety new modern materials are developed ongoing. Because of relatively low production costs, high strength and simultaneously good formability the advanced high strength steels (AHSS) are applied among others for the lightweight design of body-in-white components in the automotive industry. Their already mentioned properties follow from the presence of mixed mild and hard ferrous phases. Due to this multiphase microstructure of the most AHSS steels, a complex material and damage behavior is observed during forming. The damage grows in a ductile manner during plastic flow and the cracks appear without necking. They are often characterized as the so called shear cracks. The damage predictions with standard methods like the forming limit curve (FLC) lack accuracy and reliability. These methods are based on the measurement of linear strain paths. On the other hand ductile damage models are generally used in the bulk forming and crash analysis. The goal is to prove if these models can be applied for the damage prediction in sheet metal forming and which troubles have to be overcome. This paper demonstrates the capability of the Gurson-Tvergaard-Needleman (GTN) model within commercial codes to treat industrial applications. The GTN damage model describes the existence of voids and they evolution (nucleation, growth and coalescence). After a short introduction of the model the finite element aspects of the simulative damage prediction have been investigated. Finally, the determination of the damage model parameters is discussed for a test part.

2008 ◽  
Vol 587-588 ◽  
pp. 736-740
Author(s):  
Pedro Teixeira ◽  
Abel D. Santos ◽  
J. César de Sá ◽  
Augusto Barata da Rocha

The optimisation of sheet metal processes by using numerical simulations has become a key factor to a continuously increasing requirement for time and cost efficiency, for quality improvement and materials saving, in many manufacturing areas such as automotive, aerospace, building, packaging and electronic industries. The introduction of new materials brought new challenges to sheet metal forming processes. The behaviour observed with conventional steels may not be applied when using high-strength steels or aluminium alloys. Numerical codes need to model correctly the material and different constitutive equations must be considered to describe with greater accuracy its behaviour. This enhancement of material description may provide a better prediction of the forming limits, enabling an assessment of the influence of each forming parameter on the necking occurrence and the improvement of press performance. This paper presents two numerical approaches for failure prediction in sheet metal forming operations: one is the implementation of the Lemaitre’s ductile damage model in the Abaqus/Explicit code in accordance with the theory of Continuum Damage Mechanics and the other is the traditional use of FLDs, usually employed as an analysis of the finite element solution in which the necking phenomenon is carried out in the framework of Marciniak-Kuczinsky (M-K) analysis coupled with the conventional theory of plasticity. The previous strategies and corresponding results are compared with two experimental failure cases, in order to test and validate each of these strategies.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2021 ◽  
Author(s):  
Zhihui Gong ◽  
Mandeep Singh ◽  
Bohao Fang ◽  
Dongbin Wei

Abstract Springback compensation is critical in sheet metal forming. Advanced techniques have been adopted in the design stage of various sheet metal forming processes, e.g. stamping, some of which are for complex shaped products. However, the currently available numerical approaches are not always sufficiently accurate and reliable. To improve the accuracy of springback compensation, an enhanced hybrid springback compensation method named Springback Path – Displacement Adjustment (SP-DA) method has been developed in this study based on the well-known conventional displacement adjustment (DA) method. Its effectiveness is demonstrated using FEM analysis of low, medium and high strength steels adopted in automobile industry, in which a symmetrical model owning geometry complexity similar to an auto body panel was established. The results show this new enhanced SP-DA method is able to significantly improve the accuracy of springback compensation comparing to conventional displacement adjustment technique.


2013 ◽  
Vol 581 ◽  
pp. 137-142 ◽  
Author(s):  
Miklós Tisza

In this paper, some recent developments in materials applied in sheet metal forming processes will be overviewed mainly from the viewpoint of automotive industry as one of the most important application fields. If we consider the main requirements in the automotive industry we can state that there are very contradictory demands on developments. Better performance with lower consumption and lower harmful emission, more safety and comfort are hardly available simultaneously with conventional materials and conventional manufacturing processes. These requirements are the main driving forces behind the material and technological developments in sheet metal forming: application of high strength steels, low weight light alloys and the appropriate non-conventional forming processes are the main target fields of developments summarized in this paper.


2012 ◽  
Vol 502 ◽  
pp. 36-40
Author(s):  
Ying Ke Hou ◽  
Shu Hui Li ◽  
Yi Xi Zhao ◽  
Zhong Qi Yu

Galling is a known failure mechanism in many sheet metal forming processes. It limits the lifetime of tools and the quality of the products is affected. In this study, U-channel stamping experiments are performed to investigate the galling behavior of the advanced high strength steels in sheet metal forming . The sheet materials used in the tests are DP590 and DP780. In addition to the DP steels, the mild steel B170P1 is tested as a reference material in this study. Experimental results indicate that galling problem becomes severe in the forming process and the galling tendency can be divided into three different stages. The results also show that sheet material and tool hardness have crucial effects on galling performance in the forming of advanced high strength steels. In this study, DP780 results in the most heaviest galling among the three types of sheet materials. Galling performance are improved with increased hardness of the forming tool.


2010 ◽  
Vol 154-155 ◽  
pp. 1223-1227 ◽  
Author(s):  
Zhi Guo An ◽  
Yu Zhang

In sheet metal forming process, the input process parameters scatter and considerably result in unreliablity in practical production. Optimization for sheet metal forming process is often considered as a multi-objective problem. An optimizition strategy for high strength steel (HSS) sheet metal forming process was suggested based on response surface methodology (RSM). Latin Hypercube Sampling (LHS) method was introduced to design the rational experimental samples; the objective function was defined based on cracking factor wrinkle factor and severe thinning factor; the accurate response surface for sheet metal forming problem was built by Least Square Method; Multi-objective Genetic Algorithm(MOGA) was adoped in optimization and Pareto solution was selected. The strategy was applied to analyze a HSS auto-part, the result has proved this method suitable for optimization design of HSS sheet metal forming process.


2007 ◽  
Vol 344 ◽  
pp. 9-20 ◽  
Author(s):  
Manfred Geiger ◽  
Marion Merklein

Within the last years in sheet metal forming a trend towards forming at elevated temperatures as well as temperature assisted forming technologies can be observed. This development is caused by the increasing need on light and high strength materials in order to fulfill the demands of light weight structures. The decision which kind of temperature assistance is the most useful in order to improve the formability of the material depends on a hugh number of process influencing parameters, like e.g. the material itself, the geometry of the component, the number of forming operations etc.. In this paper the general possibility to separate different temperature assisted forming processes with regard to the used materials will be introduced. The different forming procedures will be explained and discussed. Examples with an industrial relevance are shown.


2017 ◽  
Vol 12 (4) ◽  
pp. 81-92
Author(s):  
Aqeel Sabree Baden

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess the surface roughness of incremental forming parts along and across tool path direction. The data required has been generate, compare and evaluate to the proposed models that obtained from SPIF experiments. Simulated Annealing Algorithm (SAA) is utilized to develop an effective mathematical model to predict optimum level. In simulated algorithm (SA), an exponential cooling schedule depending on Newtonian cooling process is used and by choosing the number of iterations at each step on the experimental work is done. The SA algorithm is used to predict the forming parameters (speed, feed and step size) on surface quality in forming process of Al 1050 based on Taguchi‘s orthogonal array of L9 and (ANOVA) analysis of variance were used to find the best factors that effect on  the surface quality.


2021 ◽  
Author(s):  
Hamidreza Gharehchahi ◽  
Mohammad Javad Kazemzadeh-Parsi ◽  
Ahmad Afsari ◽  
Mehrdad Mohammadi

Abstract The optimum design of an initial blank shape in sheet metal forming processes is an important step in many industries, especially automobile manufacturers because it reduces production costs and material waste. To the best of our knowledge, no research has been conducted on the blank shape designs based on 3D space target contours. Moreover, the present study considers parts with internal boundaries and optimum design of the internal boundary, which are among the innovations of this research. By following the iterative simulation-based optimization process, a special updating algorithm was proposed to modify the blank geometry in each iteration and reach the optimum shape. The sheet forming was severely nonlinear, due to plastic behavior, large deformations, and frictional contact surfaces. Therefore, the updating formula should be robust enough to be insensitive to the initial guess for the blank. To evaluate the proposed updating formula, some numerical examples were solved and the results were presented. Finally, the robustness of the proposed algorithm was investigated in these numerical experiences, by considering different geometries, target contours, internal boundaries, and initial guesses. The present study reveals that the proposed algorithm can be effectively used to solve blank optimization problems for the deep drawing process.


Sign in / Sign up

Export Citation Format

Share Document