Tensile Behavior of Foamed Aluminum with Closed-Cell

2011 ◽  
Vol 480-481 ◽  
pp. 117-119
Author(s):  
Fang Wang ◽  
Lu Cai Wang ◽  
Jian Guo Wu

Foamed aluminum has been applied in many fields due mainly to its excellent properties. The tensile deformation process and characteristics of foamed aluminum with closed-cell were studied in this paper and the deformation mechanisms were discussed. The results show that foamed aluminum fractured without necking. The tensile stress-strain curves have similar characteristics, the linear elasticity at a low stresses followed by plastic yielding, strain hardening and rupture, which has obvious difference with compression stress-strain curve. The fracture mechanism is neither brittle fracture nor plastic fracture. The defects existed in foamed aluminum interior have important influence on tensile property.

2020 ◽  
Vol 10 (10) ◽  
pp. 3351
Author(s):  
Bo Ke ◽  
Jian Zhang ◽  
Hongwei Deng ◽  
Xiangru Yang

The effect of temperature fluctuation on rocks needs to be considered in many civil engineering applications. Up to date the dynamic characteristics of rock under freeze-thaw cycles are still not quite clearly understood. In this study, the dynamic mechanical properties of sandstone under pre-compression stress and freeze-thaw cycles were investigated. At the same number of freeze-thaw cycles, with increasing axial pre-compression stress, the dynamic Young’s modulus and peak stress first increase and then decrease, whereas the dynamic peak strain first decreases and then increases. At the same pre-compression stress, with increasing number of freeze-thaw cycles, the peak stress decreases while the peak strain increases, and the peak strain and peak stress show an inverse correlation before or after the pre-compression stress reaches the densification load of the static stress–strain curve. The peak stress and strain both increase under the static load near the yielding stage threshold of the static stress–strain curve. The failure mode is mainly shear failure, and with increasing axial pre-compression stress, the degree of shear failure increases, the energy absorption rate of the specimen increases first and then decreases. With increasing number of freeze-thaw cycles, the number of fragments increases and the size diminishes, and the energy absorption rates of the sandstone increase.


2004 ◽  
pp. 13-31

Abstract This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion on the parameters that are used to describe the engineering stress-strain curve of a metal, namely, tensile strength, yield strength or yield point, percent elongation, and reduction in area. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. Next, it reviews the effect of strain rate and temperature on the stress-strain curve. The chapter then describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.


2020 ◽  
Vol 35 ◽  
pp. 1-8
Author(s):  
Hua Qian Ang

The tensile deformation behaviour of magnesium alloy AE44 (Mg-4Al-4RE) under strain rates ranging from 10-6 to 10-1 s-1 has been investigated. Present study shows that the deformation mode begins with the activation of elastic (Stage 1), followed by <a> basal slip and twinning (Stage 2), <a> prismatic slip (Stage 3) and finally to <c+a> pyramidal slip (Stage 4). The commencement of these deformation mechanisms results in four distinct stages of strain hardening in the stress-strain curve. In this work, the four stages of deformation behaviour are modelled, and an empirical equation is proposed to predict the entire stress-strain curve. Overall, the model predictions are in good agreement with the experimental data. This study on the decomposition of stress-strain curve into four stages provides insights into the contribution of individual deformation mechanism to the overall deformation behaviour and opens a new way to assess mechanical properties of die-cast magnesium alloys.


1971 ◽  
Vol 6 (4) ◽  
pp. 286-292 ◽  
Author(s):  
P W J Oldroyd

A formula—Nadai's bending formula—is derived which enables the tension (or compression) stress-strain curve for a material to be obtained from the curve relating bending moment to curvature for a beam of solid rectangular section. The method is extended to give a formula which covers deformations in which reversals of plastic strain occur. The results obtained from a unidirectional bending test made on annealed copper are compared with those obtained from a tensile test made on the same material and the accuracy of the stress-strain values obtained from the bending test is discussed. The results obtained from a reversed bending test are also compared with those obtained from a tension-compression test in which a specimen was first stretched and then compressed to its original length. The limitations imposed by this method of obtaining the stress-strain curve for a material are examined and the advantages its presents in the study of the behaviour of materials under uniaxial stress are outlined.


1990 ◽  
Vol 46 (8) ◽  
pp. 311-317
Author(s):  
Toshiyasu Kinari ◽  
Akihiro Hojo ◽  
Sukenori Shintaku ◽  
Nobuo Iwaki

The variation of plastic deformation in aluminium specimens consisting of large crystals has been determined by measuring elongation and hardness at various points after tensile deformation. The deformation varied from grain to grain, and also within each grain the deformation near the boundary was greater or smaller than at the centre according to whether the neighbour was more or less deformed, i. e. there is not necessarily inhibition of slip near grain boundaries. These results were supported by metallographic and X-ray observations. Their importance with respect to the calculation of the stress-strain curve of aggregates from those of single crystals is discussed. It is suggested that a mechanism other than slip operates near the grain boundaries during deformation, and even within the crystals during large extensions.


2017 ◽  
Vol 31 (27) ◽  
pp. 1750247 ◽  
Author(s):  
Guo-Jie Shi ◽  
Jin-Guo Wang ◽  
Zhao-Yang Hou ◽  
Zhen Wang ◽  
Rang-Su Liu

The mechanical properties and deformation mechanisms of Au nanowire during the tensile processes at different strain rates are revealed by the molecular dynamics method. It is found that the Au nanowire displays three distinct types of mechanical behaviors when tensioning at low, medium and high strain rates, respectively. At the low strain rate, the stress–strain curve displays a periodic zigzag increase–decrease feature, and the plastic deformation is resulted from the slide of dislocation. The dislocations nucleate, propagate, and finally annihilate in every decreasing stages of stress, and the nanowire always can recover to FCC-ordered structure. At the medium strain rate, the stress–strain curve gently decreases during the plastic process, and the deformation is contributed from sliding and twinning. The dislocations formed in the yield stage do not fully propagate and further escape from the nanowire. At the high strain rate, the stress-strain curve wave-like oscillates during the plastic process, and the deformation is resulted from amorphization. The FCC atoms quickly transform into disordered amorphous structure in the yield stage. The relative magnitude between the loading velocity of strain and the propagation velocity of phonons determines the different deformation mechanisms. The mechanical behavior of Au nanowire is similar to Ni, Cu and Pt nanowires, but their deformation mechanisms are not completely identical with each other.


Sign in / Sign up

Export Citation Format

Share Document