Determination of Bioactive Components of Oil-Tea Cake by Pyrolysis- GC/MS

2011 ◽  
Vol 480-481 ◽  
pp. 256-260
Author(s):  
Qi Mei Liu ◽  
Dang Quan Zhang ◽  
Kuan Peng ◽  
Wan Xi Peng

The oil-tea cake is the particular byproduct during producing tea-oil from seeds of Camellia oleifera (oil-tea tree). However, the current processing and utilization of oil-tea cake is still low economic benefit and also low value-added. Therefore, 300°C-based pyrolysis- GC/MS technology was used to analyze the top value-added bioactive components of benzene/ethanol extractives of oil-tea cake. The analytical result showed that 14 peaks were obtained from the 300°C pyrolyzate of benzene/ethanol extract of oil-tea cake, and 13 compounds representing 99.16% of the total areas were identified. The MS analytical result showed that the main components of pyrolyzates of benzene/ethanol extractives of oil-tea cake by 300°C pyrolysis- GC/MS were identified as: ethyl oleate; 14-pentadecenoic acid; pentadecanoic acid, ethyl ester; hexadecanoic acid, 2-hydrsoxy-1,3-propanedryl ester; pentadecanoic acid, ethyl ester; squalene; 1,2-benzenedicarboxylic acid, butyl 2-methylpropyl ester; 1,2-benzenedicarboxylic acid, 3-nitro-; etc.The results of function analyses showed that the 300°C pyrolyzate of benzene/ethanol extractives of oil-tea cake contains abundant bioactive components of rare natural medicinal materials, and also contain many components which can be developed into two value-added materials of industrial chemical and high-grade spice.

Author(s):  
Morenike Olutunmbi Adeoye-Isijola ◽  
Olufunmiso Olusola Olajuyigbe ◽  
Segun Gbolagade Jonathan ◽  
Roger Murugas Coopoosamy

Background: The continuous search for new lead compounds of therapeutic importance has become necessary in the face of treatment failures and multidrug resistance plaguing the world. While many plants and higher fungi are sources of bioactive compounds yet to be fully harnessed, understanding the bioactive components in macrofungus could serve as a lead for investigating its biological activities and medicinal potentials. Materials and Methods: The bioactive compounds in the ethanolic extract of Lentinus Squarrosulus, an edible Nigerian macrofungus, were investigated by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Results: There were nine bioactive compounds in this edible macrofungus. Of these compounds, 9,12-Octadecanoic acid ethyl ester (37.39%; RT:39.815) was the highest in quantity, followed by Hexadecanoic acid ethyl ester (14.49%; RT:36.550). Other fatty acids, their ethyl esters and other compounds identified included 2-Butenethioic acid,3-(ethylthio)-S-(1-methylethyl) ester (4.51%; RT:15.866), n-Hexadecanoic acid (4.74%; RT:36.034), 9,12-Octadecadienoic acid (Z,Z)- (11.88%; RT:39.429), 9,17-Octadecadienal,(Z)- (5.01%; RT:39.500), ethyl oleate (5.27%; RT:39.898), 3a,6-Methano-3aH-indene,2,3,6,7 tetrahydro (4.04%; RT:48.379), and 9,12-Octadecadienoic acid (Z,Z)-,2 hydroxy-1-(hydroxymethyl) ethyl ester (12.68%; RT:48.682). Some of these compounds have antimicrobial, antioxidant, hepatoprotective, hypocholesterolemic as well as cancer preventive activities amongst others. Conclusion: This study showed the bioactive components of therapeutic potentials in L. squarrosulus while creating a platform for screening, isolating and identifying many bioactive components which may be useful in the treatment of the various ailments, disorders and diseases in the nearest future.


2011 ◽  
Vol 230-232 ◽  
pp. 930-934
Author(s):  
Gong Xiu He ◽  
Dang Quan Zhang ◽  
Qi Mei Liu ◽  
Kuan Peng

Chinese Hackberry (Celtis sinensis) tree has high adaptability to environment and tolerance to water stress, and a long history of utilization and plantation in many countries. However, researches on Chinese Hackberry were mostly focused on the biomass analyses and utilizations of its wood, and lacked those to analyze the chemical components of extractives of Chinese Hackberry leaves, which was very important to recover and utilize the polluting waste Chinese Hackberry leaves. Therefore, the chemical components of benzene/ethanol extractives of Chinese Hackberry leaves were analyzed by method of GC/MS in order to identify top value-added bioactive components from waste leaves of Chinese Hackberry tree. The analytical result showed that the main components of benzene/ethanol extractives of freeze-dried Chinese Hackberry leaves by GC/MS analysis were identified 10 components (106 peaks) as: Sesquirosefuran (48.57%), Thiophene, 2-ethyltetrahydro- (20.01 %), Hexatriacontane (8.67%), Octadecane (8.60%), 1-Eicosanol Pregn-4-en-3-one, 20-hydroxy-, (20R)- (4.52%), 1-Amino-2-(hydroxymethyl)anthraquinone (3.63%), 1,3-Diphenyl-(4H)1,2,4-triazoline- (1.92%), Tricyclo[4.3.1.13,8]undecane-1-carboxylic acid (1.69%), Eucalyptol (1.60%), etc. As the first report here, our result by GC/MS showed that the benzene-methanol extractive of freeze-dried Chinese Hackberry leaves can be developed into top value-added materials of spicery, biomedicines, and biofuel.


2011 ◽  
Vol 480-481 ◽  
pp. 513-518
Author(s):  
Qi Mei Liu ◽  
Wan Xi Peng

450°C-based pyrolysis- GC/MS technology was used to analyze the bioactive components of ethanol extractives of oil-tea cake. The analytical result showed that 38 peaks were obtained from the 450°C-based pyrolyzate of ethanol extractives of oil-tea cake, and 37 compounds representing 97.81 % of the total areas were identified (Table 1). The analytical result showed that the main components of ethanol extractives of oil-tea cake by 450°C-based pyrolysis- GC/MS were as: Benzene, 1,2,3-Trimethoxy-5-Methyl- (21.56%), Phenol, 3,4-Dimethoxy- (16.31%), 3',5'-Dimethoxyacetophenone (14.37%), 1,2-Ethanediamine, N-Ethyl- (6.62%), Indole (5.39%), Mequinol (4.13%), Phosphonic Acid, (P-Hydroxyphenyl)- (2.97%), 1,2-Cyclobutanedicarboxylic Acid, Cis- (1.67%), Bicyclo 3.1.0 Hexan-3-One (1.38%), Benzene, 1,4-Dimethoxy-2,3,5,6- Tetramethyl- (1.35%), 2h-Azepin-2-One, Hexahydro-1-(2-Propenyl)- (1.15), etc. The results of function analyses showed that the 450°C-based pyrolyzate of ethanol extractives of oil-tea cake can be used as rare natural medicinal materials, and value-added materials of spice, food and cosmetic industry.


2019 ◽  
pp. 129-134
Author(s):  
Sitara Jalal Mustafayeva ◽  
Sirajeddin Veli Serkerov ◽  
Konul Farrux Bakhshaliyeva

The qualitative and quantitative composition of chemical components of ethanol extract of the above-ground part of Anthemis altissima L. (syn. Cota altissima (L.) J.Gay) species (family Asteraceae) collected during flowering phase from the flora of Azerbaijan has been studied. The chemical composition of ethanol extract was analyzed by chromatography-mass-spectrometry methods. 54 components were identified in the extract. As a result of the study, it was found that the A. altissima contained benzene aromatic compounds (77.21%). Among them Benzene, (1-butylheptyl) – 7.84%, Benzene, (1-propyloctyl) – 7.71%, Benzene, (1-pentyloctyl) – 7.03%, Benzene, (1-pentylheptyl) – 5.69%, Benzene, (1-butyloctyl) – 5.37%, Benzene, (1-propylnonyl) – 5.02% were the main components.  In addition to the above components in the extract of the aerial part other biological active substances, such as alcohols (6.37% – of them prevail Hop-22(29)-en-3. β.-ol – 1.53%, γ-Sitosterol – 1.32%), esters of acids (5.3% – of them prevail Hexadecanoic acid, ethyl ester – 0.88%; Linoleic acid, ethyl ester – 0.63%) and alkanes (1.64% – of them prevail Eicosane – 0.53%; Pentacosane – 0.40%) were also identified. The share of unidentified components was 8.99%. The article also presents the results of the study of the antifungal properties of A. altissima and its aqueous extract against the culture of pathogenic fungi Fusarium oxysporium and Aspergillus niger. The aqueous extract of A. altissima, in contrast to the plant itself, shows a fungistatic effect on the fungi Fusarium oxysporum and Aspergillus niger.


2011 ◽  
Vol 230-232 ◽  
pp. 935-939
Author(s):  
Wei He ◽  
Dang Quan Zhang ◽  
Qi Mei Liu ◽  
Kuan Peng

The extractives of C. camphora old bark were used to cure some special diseases; however, the biomedical constituents of extractives of C. camphora old bark are still not completely explained. Therefore, 350 °C-based pyrolysis- GC/MS technology was used to identify the top value-added biomedical constituents of old bark-based benzene/ethanol extractives from C. camphora trunk. 74 chemical constituents representing 99.17% were identified from 86 peaks. The main components are as: Dodecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester (15.717%), Octacosanoic acid, methyl ester (10.357%), Abietic acid (8.483%), Heptacosane (5.678%), Ethyl alcohol (5.282%), Hexadecanoic acid, 2-hydroxy-, methyl ester (3.365%), Hexacosanoic acid, methyl ester (2.936%), 1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester (2.928%), 2-Methoxy-4-vinylphenol (2.692%), Hexadecanoic acid, ethyl ester (2.312%), Hexacosane (2.076%), Tetracosanoic acid, methyl ester (2.013%), etc. The analytical result showed that the 350 °C pyrolyzate of benzene/ethanol extractives from C. camphora old bark is abundant in biomedical constituents, and also contains other bioactive components, which can be used as top value-added materials of high-grade cosmetic, food, spice and chemical solvents.


2011 ◽  
Vol 480-481 ◽  
pp. 278-282
Author(s):  
Zhi Xiang He ◽  
Dang Quan Zhang ◽  
Qing Li

Rosewood tree has high adaptability to environment and tolerance to water stress, and a long history of utilization and plantation in many countries. However, researches on Rosewood were mostly focused on the biomass analyses and utilizations of its wood, and lacked those to analyze the chemical components of extractives of Rosewood leaves, which was very important to recover and utilize the polluting waste Rosewood leaves. Therefore, the chemical components of benzene/ethanol extractives of Rosewood leaves were analyzed by method of GC/MS in order to identify top value-added bioactive components from waste leaves of Rosewood tree. The analytical result showed that the main components of benzene/ethanol extractives of freeze-dried Rosewood leaves by GC/MS analysis were identified 16 constituent (16 peaks) as: Ethanol, 2-butoxy- (40.36%), 2-O-Methyl-D-mannopyranosa (18.22 %), Hydrazine, 1,1-dipropyl- (6.09%), 1-Docosanol (5.59%), 1-Eicosanol (5.28%), Oxirane, hexadecyl- (3.63%), trans-2,4,5-Trimethoxy-.beta.-methyl- (3.50%), Bicyclo[3.1.1]heptane, 2,6,6-trimethyl- (2.53%), 9,12,15-Octadecatrienoic acid, methyl- (2.43%), Tetratetracontane (2.31%), Hexadecane, 1-(ethenyloxy)- (2.27%), Cholan-24-oic acid, 7,12-bis(acetyloxy)-3-ethoxy-, methyl ester, (3.alpha.,5.beta.)- (2.10%), Hexatriacontane (2.02%), Phytol (1.76%), Octadecane, 1-chloro (1.08%), etc. As the first report here, our result by GC/MS showed that the benzene-methanol extractive of freeze-dried Rosewood leaves can be developed into top value-added materials of medicines, biofuel, and industrial solvents.


2011 ◽  
Vol 230-232 ◽  
pp. 847-851
Author(s):  
Yan Ling Zeng ◽  
Dang Quan Zhang ◽  
Wan Xi Peng

The current processing and utilization of oil-tea cake is still characterized by low economic benefit and low value added, therefore, 300°C-based pyrolysis- GC/MS technology was used to analyze the bioactive components of acetone extractives of oil-tea cake. Relative content of each component was determined by area normalization. The analytical result showed that the main components from 300°C-based pyrolyzate of acetone extractives of oil-tea cake by pyrolysis- GC/MS were as: SQUALENE (18.61%), 9-OCTADECENAL, (Z)- (15.27%), 3',5'-DIMETHOXYACETOPHENONE (9.53%), HEXADECANOIC ACID (7.28%), (Z)14-TRICOSENYL FORMATE (5.15%), .GAMMA.-SITOSTEROL (3.82%), BIS(2-METHOXYETHYL) PHTHALATE (2.86%), ERGOST-5-EN-3-OL, (3.BETA.)- (2.31%), etc. The results of function analyses showed that the 300°C-based pyrolyzate of acetone extractives of oil-tea cake contain rich components of rare natural medicinal materials, and also contain value-added materials of high-grade spice, food, cosmetic and bioenergy.


2011 ◽  
Vol 480-481 ◽  
pp. 250-255
Author(s):  
Dang Quan Zhang ◽  
Lin Lin Guo ◽  
Qi Mei Liu ◽  
Kun Yue ◽  
Li Hui Wang ◽  
...  

The bamboo resource is very abundant in China, and both species and yield of bamboo are the first in the world. In the countryside of China, farmers often used the extractives of bamboo root to cure some special diseases; however, the biomedical constituents of extractives of bamboo root are still not completely explained. Therefore, 450 °C pyrolysis- GC/MS technology was used to identify the top value-added biomedical constituents of root-based benzene/ethanol extractives from the richest bamboo species “Moso bamboo”. After treatment of benzene/ethanol extraction, the extractives obtained was fully pyrolyzed at 450 °C in He atmosphere, and then the 450 °C pyrolyzate obtained was analyzed by online-linked GC/MS. Relative content of each component was determined by area normalization. 59 chemical constituents representing 97.62% were identified from 64 peaks. The analytical result showed that the 450 °C pyrolyzate of benzene/ethanol extractives from Moso bamboo root is abundant in biomedical constituents, and also contains other bioactive components, which can be used as top value-added materials of high-grade cosmetic, food, spice, and chemical. The result will be useful to expedite biomedical development of root extractives, and to provide further scientific foundation for its top value-added application of bamboo resources.


2014 ◽  
Vol 881-883 ◽  
pp. 419-422
Author(s):  
Ai Mei Yang ◽  
Yun Men ◽  
Han Han ◽  
Lin Yang ◽  
Xiao Long Shi ◽  
...  

Eight compounds were isolated from the ethanol extract of G. algida Pall. the structure of these compounds were identified as: oleic acid (1), linoleic acid (2), octacosanoic acid (3), β-sitosterol (4), 2,3-dihydroxybenzoic acid ethyl ester (5), n-butyl isobutyl phthalate (6), daucosterol (7), 5,8-dimethoxy furocoumarin (8). These structures were identified by NMR MS IR and other spectroscopic techniques. These compounds were isolated from this plant for the first time.


2011 ◽  
Vol 230-232 ◽  
pp. 857-861
Author(s):  
Dang Quan Zhang ◽  
Qi Mei Liu ◽  
Lin Lin Guo ◽  
Huai Yun Zhang

The extractives of bamboo root was often used to cure some intractable diseases in the countryside of China, but the components of bamboo root extract are still unresolved. Therefore, 300 °C-based pyrolysis- GC/MS technology was used to identify and analyze the top value-added biomedical and bioactive components of benzene/ethanol extractives of Moso bamboo root. 45 compounds representing 97.316 % of the total areas were identified (Table 1) from 55 peaks. The main chemical components of benzene/methanol extractives of Moso bamboo root by 300°C-based Pyrolysis- GC/MS are as: 1,3-BENZODIOXOLE, 5-(1-PROPENYL)- (15.263%), NAPHTHALENE (12.316%), 1,2-BENZENEDICARBOXYLICACID,BIS(2-METHYLPROPYL) ESTER (9.385%), BENZENE, 1,2-DIMETHOXY-4-(2-PROPENYL)- (7.624%), 2-PROPENOIC ACID, 3-(2-HYDROXYPHENYL)- (E)- (6.012%), 4-HYDROXY-2-METHYLACETOPHENONE (5.226%), 1,2-BENZENEDICARBOXYLIC ACID, BUTYL2-METHYLPROPYL ESTER (4.328%), etc. The result showed that the 300 °C pyrolyzate of benzene/ethanol extractives of Moso bamboo root is rich in biomedical components, and also contains some bioactive components which can be used as top value-added materials of high-grade spice, cosmetic and food.


Sign in / Sign up

Export Citation Format

Share Document