Design, Simulation and Fabrication of an Air-Driven Microturbomachine

2011 ◽  
Vol 483 ◽  
pp. 611-615
Author(s):  
Shao Chun Sun ◽  
Geng Chen Shi

This paper presents the design, simulation and fabrication of an mm-scale air-driven microturbomachine. The circumferential-flow turbomachine has a plain-shaped structure with an overall size of 8×8×3mm3. The predicted formulas for driving torque and driving power are deduced by analyzing the working condition of the model. Finite element simulation is carried out to determine the driving torque and driving power. Turbine and stator are fabricated using UV-LIGA technique, while other components using pension micromachining. Test results of assembled prototype show that under the air-flow speed of 80m/s, no-load and load rotation speed are 10kr/min and 9.5kr/min respectively, and the output power is 326.57µW. The results indicate micro turbomachine is potential power source for the micro system.

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


2014 ◽  
Vol 678 ◽  
pp. 551-555
Author(s):  
Xue Zhi Wang ◽  
Hao Fei Zou ◽  
Shu Wen Zheng ◽  
Yuan Li ◽  
Jun Yu Liu

I-II mixed mode fracture under two kinds of load manners was carried out, and it was also simulated by the ANSYS, and the test results and the simulation results were compared and analyzed, and the reasonableness of the model built and the effectiveness of test were verified. The failure process of fracture under the loading could be judged through the development of the crack tip combined with the stress nephogram and strain nephogram when cracks initiation at crack tip, and it provided the basis for the crack damage judgment.


2014 ◽  
Vol 551 ◽  
pp. 164-169 ◽  
Author(s):  
Wei Zheng ◽  
Bai Song Lin ◽  
Jing Shi Dong ◽  
Jing Yuan Shi ◽  
Bo Da Wu

This paper studied the characteristics of the bimorph piezoelectric vibrator for piezoelectric pump. By simulating the working conditions of the vibration in the pump, we constructed a dynamic model and derived the bending vibration equations of the piezoelectric vibrator under different support conditions. Then the analysis of finite element simulation is carried out for the equations, through which the vibration mode of the multi-order modal of the piezoelectric vibrator was acquired, and the relationship between the deformation deflection and peripheral support stiffness of the piezoelectric vibrator was analyzed. Finally, the deformation of the piezoelectric vibrator was tested. It is found that the test results are consistent with the conclusions of the finite element simulation, which provides a theoretical basis for the optimal design of the bimorph piezoelectric vibrator.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


Sign in / Sign up

Export Citation Format

Share Document