Silicon Nitride Grain Boundary Glasses: Chemistry, Structure and Properties

2011 ◽  
Vol 484 ◽  
pp. 46-51 ◽  
Author(s):  
Stuart Hampshire ◽  
Michael J. Pomeroy

Silicon nitride is recognised as a high performance material for both wear resistant and high temperature structural applications. Oxide sintering additives such as yttrium oxide and alumina are used to provide conditions for liquid phase sintering, during which the additives react with surface silica present on the Si3N4 particles and some of the nitride to form an oxynitride liquid which allows densification and transformation of - to -Si3N4 and on cooling remains as an intergranular oxynitride glass. This paper provides an overview of liquid phase sintering of silicon nitride ceramics, grain boundary oxynitride glasses and the effects of chemistry and structure on properties. As nitrogen substitutes for oxygen in oxynitride glasses, increases are observed in glass transition and softening temperatures, viscosities, elastic moduli and microhardness. These property changes are compared with known effects of grain boundary glass chemistry in silicon nitride ceramics.

Author(s):  
Michael K. Cinibulk

Silicon nitride ceramics are among the leading candidate materials for use in structural applications at high temperatures. Due to the highly covalent nature of the Si-N bond and therefore low self-diffusivity, processing Si3N4 to full density requires the use of additives to provide a medium for liquid-phase sintering. When exposed to temperatures above ∼1000°C the resulting amorphous grain-boundary phases soften, leading to grain-boundary sliding and the eventual failure of the ceramic. The objectives of this work were to modify the grain-boundary phase composition and then attempt to devitrify the resulting intergranular phase to a refractory crystalline phase, producing a sintered Si3N4 with improved high-temperature strength and oxidation resistance. Transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDS) were used to characterize these materials. This paper describes these results.


ChemInform ◽  
2010 ◽  
Vol 30 (13) ◽  
pp. no-no
Author(s):  
Hui Gu ◽  
Xiaoqing Pan ◽  
Rowland M. Cannon ◽  
Manfred Ruehle

1992 ◽  
Vol 287 ◽  
Author(s):  
Yo Tajima

ABSTRACTProgress in sintering process and improvement of mechanical properties of silicon nitride ceramics are reviewed. Emphases are placed on contributions of advanced sintering techniques and better understanding of sintering additives and microstructure-properties relations. Current applications as engine components and cutting tools are described, and future prospect is considered.


2020 ◽  
Vol 51 (11) ◽  
pp. 5818-5835
Author(s):  
P. K. Farayibi ◽  
M. Blüm ◽  
S. Weber

Abstract Martensitic stainless steels are suitable for diverse structural applications but degrade when subjected to wear-prone activities in service. To enhance their service life, the densification of high Cr, martensitic, X190CrVMo20-4-1 tool steel powder on two different martensitic stainless steel substrates via supersolidus liquid-phase sinter (SLPS) cladding was investigated. The objective was to assess the influence of the difference in compositions of the martensitic stainless steels employed as substrates on the interfacial diffusion, microstructure, hardness and bonding strength of the steel-to-steel claddings. Computational thermodynamics and diffusion simulations were employed to supplement experimental findings. Owing to interdiffusion, a M7C3 carbide-free, banded region exists in the X190 adjacent to the interface with the width dictated by chemical potential gradient of carbon. The hardness of the substrate was lower near the interface region because of carbon enrichment, which promoted the presence of retained austenite. An interfacial strength of 798 MPa was achieved with fairly ductile X190 matrix near the cladding interface as the fracture surface was characterized by mixed fracture modes of dimple rupture and cleavage with localized quasi-cleavage features. Experimental observations and computational simulations are in agreement. The implications of the SLPS cladding technique are discussed in the context of tool development.


1998 ◽  
Vol 161-163 ◽  
pp. 59-62
Author(s):  
Katsutoshi Komeya ◽  
Takeshi Meguro ◽  
Y. Chiba ◽  
Hua Long Li ◽  
Toshihiro Kameda ◽  
...  

1998 ◽  
Vol 13 (3) ◽  
pp. 660-664 ◽  
Author(s):  
I. Zajc ◽  
M. Drofenik

Donor-doped BaTiO3 ceramics were prepared by adding PbO B2O3 SiO2 as a sintering aid. Semiconducting BaTiO3 was obtained at a sintering temperature of 1100 °C. The sintered samples exhibit the Positive Temperature Coefficient of Resistivity (PTCR) effect, which depends on the amount of liquid phase, the concentration of the donor-dopant, and the sintering temperature. The cold resistivity of the samples decreases when the sintering temperature increases. The increase of the grain boundary resistivity and hence of the cold resistivity at lower sintering temperatures was explained by applying the diffusion grain boundary layer model.


1992 ◽  
Vol 287 ◽  
Author(s):  
H.-J. Kleebe ◽  
M. K. Cinibulk ◽  
I. Tanaka ◽  
J. Bruley ◽  
R. M. Cannon ◽  
...  

ABSTRACTCharacterization of silicon nitride ceramics by transmission electron microscopy (TEM) provides structural and compositional information on intergranular phases necessary to elucidate the factors that can influence the presence and thickness of grain-boundary films. Different TEM techniques can be used for the detection and determination of intergranular-film thickness, however, the most accurate results are obtained by high-resolution electron microscopy (HREM). HREM studies were applied, in conjunction with analytical electron microscopy, to investigate the correlation between intergranular-phase composition and film thickness. Statistical analyses of a number of grain-boundary films provided experimental verification of a theoretical equilibrium film thickness. Model experiments on a high-purity Si3N4 material, doped with low amounts of Ca, suggest the presence of two repulsive forces, a steric force and a force produced by an electrical double layer, that may act to balance the attractive van der Waals force necessary to establish an equilibrium film thickness.


Sign in / Sign up

Export Citation Format

Share Document