Influence of Ca2+ and Mg2+ Supplementation on In Vitro Biological Properties of Hydroxyapatite/Collagen Nanocomposite Membrane

2011 ◽  
Vol 493-494 ◽  
pp. 126-131 ◽  
Author(s):  
Subhadip Bodhak ◽  
Masanori Kikuchi ◽  
Ayako Oyane ◽  
Yu Sogo ◽  
Hideo Tsurushima ◽  
...  

Hydroxyapatite/collagen (HAp/Col) nanocomposites with bone-like self-organized nanostructure show excellent bioactivity in vivo. However, they show quite high absorbability for cationic ions and lower culture medium ionic concentrations which adversely affects bone cell proliferation and osteogenic differentiation in in vitro cell culture condition. To address this limitation, in this study we have supplemented Ca2+ and Mg2+ ions to the HAp/Col nanocomposite membrane sample prior to cell culture to improve it’s in vitro biological properties. The HAp/Col nanocomposite membrane samples were fabricated by the simultaneous titration method using Ca(OH)2, type-I atelocollagen and H3PO4 as starting precursor materials. Prior to in vitro cell culture experiments, the HAp/Col samples were pretreated with Ca2+ and/or Mg2+ ions by immersing in 10 ml of 20 mM CaCl2 solution, 20 mM MgCl2 solution, or a solution containing 20 mM CaCl2 and 20 mM MgCl2 for 7 days. In vitro bone cell-material interactions on the pretreated and untreated HAp/Col samples were studied by culturing MC3T3-E1 cells up to 7 days. Enhanced bone cell proliferation was found on all the pretreated HAp/col samples as confirmed by the CCK-8 assay. Interestingly, the HAp/Col samples pretreated with both Ca2+ and Mg2+ ions showed the maximum viable bone cell density.

Bone ◽  
1996 ◽  
Vol 19 (3) ◽  
pp. 140
Author(s):  
C. Fölsch ◽  
A. Brink ◽  
A. Battmann ◽  
A. Schulz

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Guojun Chen ◽  
Yiping Zhu ◽  
Xiao Liang ◽  
Xianfa Wang ◽  
Weihua Yu ◽  
...  

This study aimed to investigate the effect of bile duct-targeting lecithins- (PC-) coupled decorin (DCN) (PC-DCN) nanoliposomes against liver fibrosis in vitro and in vivo. We prepared PC-DCN nanoliposomes by using rat astrocytes, HSC-T6, to verify the antifibrosis effect of PC-DCN in vitro. First, we established a rat model of carbon tetrachloride-induced fibrosis. PC-DCN nanoliposomes were then injected into fibrotic rats via the portal vein or bile duct. The EdU assay was performed to analyze cell proliferation. Immunofluorescence staining was used to detect α-smooth muscle actin (α-SMA) expression. Western blot was performed to examine the expression of α-SMA, collagen type I alpha 1 (COL1A1), and transforming growth factor-β (TGF-β) protein. The levels of aspartate transaminase (AST), alanine transaminase (ALT), and total bilirubin (TBIL) were examined by enzyme-linked immunosorbent assay (ELISA) analysis. Hematoxylin and eosin (H&E) staining and Masson trichrome staining were used to determine liver tissue lesions and liver fibrosis. Compared with TGF-β group, PC-DCN treatment could significantly reduce cell proliferation. Western blot analysis indicated that the expression of α-SMA, COL1A1, and TGF-β was downregulated after treatment with PC-DCN in vitro and in vivo. Immunofluorescence staining confirmed that α-SMA expression was reduced by PC-DCN. Furthermore, H&E staining and Masson trichrome staining showed that the administration of PC-DCN nanoliposomes via the bile duct could reduce the extent of liver fibrosis. PCR analysis showed that PC-DCN administration could reduce proinflammatory cytokines IL-6, TNF-α, and IL-1β expression via the bile duct. The administration of PC-DCN nanoliposomes also significantly downregulated liver function indicators ALT, AST, and TBIL. The results of our study indicated that PC-DCN could effectively reduce the extent of liver fibrosis.


2000 ◽  
Vol 167 (1) ◽  
pp. 183-195 ◽  
Author(s):  
SU Singh ◽  
RF Casper ◽  
PC Fritz ◽  
B Sukhu ◽  
B Ganss ◽  
...  

Aryl hydrocarbon receptor (AhR) ligands are environmental contaminants found in cigarette smoke and other sources of air pollution. The prototypical compound is TCDD (2,3,7, 8-tetrachlorodibenzo-p-dioxin), also known as dioxin. There is an increasing body of knowledge linking cigarette smoking to osteoporosis and periodontal disease, but the direct effects of smoke-associated aryl hydrocarbons on bone are not well understood. Through the use of resveratrol (3,5,4'-trihydroxystilbene), a plant antifungal compound that we have recently demonstrated to be a pure AhR antagonist, we have investigated the effects of TCDD on osteogenesis. It was postulated that TCDD would inhibit osteogenesis in bone-forming cultures and that this inhibition would be antagonized by resveratrol. We employed the chicken periosteal osteogenesis (CPO) model, which has been shown to form bone in vitro in a pattern morphologically and biochemically similar to that seen in vivo, as well as a rat stromal cell bone nodule formation model. In the CPO model, alkaline phosphatase (AP) activity was reduced by up to 50% (P<0.01 vs control) in the presence of 10(-9) M TCDD and these effects were reversed by 10(-6) M resveratrol (P<0.05 vs TCDD alone). TCDD-mediated inhibition of osteogenesis was restricted primarily to the osteoblastic differentiation phase (days 0-2) as later addition did not appear to have any effects. Message levels for important bone-associated proteins (in the CPO model) such as collagen type I, osteopontin, bone sialoprotein and AP were inhibited by TCDD, an effect that was antagonized by resveratrol. Similar findings were obtained using the rat stromal bone cell line. TCDD (at concentrations as low as 10(-10)M) caused an approximately 33% reduction in AP activity, which was abrogated by 3. 5x10(-7) M resveratrol. TCDD also induced a marked reduction in mineralization ( approximately 75%) which was completely antagonized by resveratrol. These data suggest that AhR ligands inhibit osteogenesis probably through inhibition of osteodifferentiation and that this effect can be antagonized by resveratrol. Since high levels of AhR ligands are found in cigarette smoke, and further since smoking is an important risk factor in both osteoporosis and periodontal disease, it may be postulated that AhR ligands are the component of cigarette smoke linking smoking to osteoporosis and periodontal disease. If so, resveratrol could prove to be a promising preventive or therapeutic agent for smoking-related bone loss.


Author(s):  
Spencer L. York ◽  
Ahmad R. Arida ◽  
Karan S. Shah ◽  
Palaniappan Sethu ◽  
Marnie M. Saunders

In the body, osteocytes reside in lacunae, lenticular shaped cavities within mineralized bone. These cells are linked to each other and surface-residing osteoblasts via physical channels known as gap junctions. It has been suggested that osteocytes sense mechanical load applied to bone and relay that signal to osteoclasts and osteoblasts. Currentin vitroandin vivomodels of mechanotransduction face temporal and spatial barriers. Recent advances in polydimethylsiloxane (PDMS) based microfabrication techniques may be able to overcome some of these hurdles. However, before the bone research field can effectively utilize microsystems techniques, fundamental groundwork must be completed. This study characterized the behaviour of osteocytes on PDMS coated with collagen type I (CTI) and provides the framework for bone cell mechanotransduction studies using microsystems. The goal was to determine whether osteocytes were adversely affected by the substrate material by comparing their behaviour to a standard glass substrate. In addition, optimal culture conditions and time points for growing osteocytes on PDMS substrates were determined. Results of this study suggested that use of PDMS does not adversely affect osteocyte behaviour. Furthermore, the results demonstrated that osteocytes should be cultured for no less than 72 hours prior to experimentation to allow the establishment and maintenance of phenotypic characteristics. These results completed essential groundwork necessary for further studies regarding osteocytes in microsystems modelling utilizing PDMS.


F1000Research ◽  
2017 ◽  
Vol 5 ◽  
pp. 2811 ◽  
Author(s):  
Anthony Tabet ◽  
Matthew Gardner ◽  
Sebastian Swanson ◽  
Sydney Crump ◽  
Austin McMeekin ◽  
...  

The rising prevalence of high throughput screening and the general inability of (1) two dimensional (2D) cell culture and (2)in vitrorelease studies to predictin vivoneurobiological and pharmacokinetic responses in humans has led to greater interest in more realistic three dimensional (3D) benchtop platforms. Advantages of 3D human cell culture over its 2D analogue, or even animal models, include taking the effects of microgeometry and long-range topological features into consideration. In the era of personalized medicine, it has become increasingly valuable to screen candidate molecules and synergistic therapeutics at a patient-specific level, in particular for diseases that manifest in highly variable ways. The lack of established standards and the relatively arbitrary choice of probing conditions has limitedin vitrodrug release to a largely qualitative assessment as opposed to a predictive, quantitative measure of pharmacokinetics and pharmacodynamics in tissue. Here we report the methods used in the rapid, low-cost development of a 3D model of a mucopolysaccharidosis type I patient’s corpus callosum, which may be used for cell culture and drug release. The CAD model is developed fromin vivobrain MRI tracing of the corpus callosum using open-source software, printed with poly (lactic-acid) on a Makerbot Replicator 5X, UV-sterilized, and coated with poly (lysine) for cellular adhesion. Adaptations of material and 3D printer for expanded applications are also discussed.


2018 ◽  
Vol 7 (3) ◽  
pp. 213-222 ◽  
Author(s):  
X. Tang ◽  
S. Teng ◽  
M. Petri ◽  
C. Krettek ◽  
C. Liu ◽  
...  

Objectives The aims of this study were to determine whether the administration of anti-inflammatory and antifibrotic agents affect the proliferation, viability, and expression of markers involved in the fibrotic development of the fibroblasts obtained from arthrofibrotic tissue in vitro, and to evaluate the effect of the agents on arthrofibrosis prevention in vivo. Methods Dexamethasone, diclofenac, and decorin, in different concentrations, were employed to treat fibroblasts from arthrofibrotic tissue (AFib). Cell proliferation was measured by DNA quantitation, and viability was analyzed by Live/Dead staining. The levels of procollagen type I N-terminal propeptide (PINP) and procollagen type III N-terminal propeptide (PIIINP) were evaluated with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the expressions of fibrotic markers were detected by real-time polymerase chain reaction (PCR). Fibroblasts isolated from healthy tissue (Fib) served as control. Further, a rabbit model of joint contracture was used to evaluate the antifibrotic effect of the three different agents. Results Dexamethasone maintained the viability and promoted the proliferation of AFib. Diclofenac decreased the viability and inhibited the cell proliferation during the first week of cultivation. However, decorin inhibited AFib proliferation and downregulated the expressions of fibrotic markers. Additionally, decorin could improve the flexion contracture angle and inhibit the deposition of interstitial matrix components in the rabbit joint model. Conclusion Decorin decreased the expression of myofibroblast markers in AFib, inhibited the proliferation of AFib, and prevented the initial procedure of arthrofibrosis in vivo, suggesting that decorin could be a promising treatment to inhibit the development of arthrofibrosis. Cite this article: X. Tang, S. Teng, M. Petri, C. Krettek, C. Liu, M. Jagodzinski. The effect of anti-inflammatory and antifibrotic agents on fibroblasts obtained from arthrofibrotic tissue: An in vitro and in vivo study. Bone Joint Res 2018;7:213–222. DOI: 10.1302/2046-3758.73.BJR-2017-0219.R2.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Paraskevi Kouka ◽  
Grigoria Tsakiri ◽  
Dimitra Tzortzi ◽  
Sofia Dimopoulou ◽  
Georgia Sarikaki ◽  
...  

Olive oil possesses a predominant role in the diet of countries around the Mediterranean basin, whereas it is a known constituent of several sectors of human culture. The polyphenolic composition of olive oil seems to be a key factor in its beneficial biological properties. Based on the above, the aim of this study was to correlate the polyphenolic composition of five extracts derived from a Greek olive oil variety with their antioxidant potency and antimutagenic activities in vitro with chemical-based techniques and cell culture-based assays. According to the results obtained, the polyphenol samples with higher concentration of hydroxytyrosol (HT) were more potent in antioxidant and antimutagenic activity in vitro, as indicated by their ability to scavenge ABTS⋅+ radical and to protect the strand of plasmid DNA from free radical-induced breaking compared to the corresponding samples with higher levels of tyrosol (T) and its derivatives. However, this observation was not evident in the cell culture model (i.e., the HeLa cervical cancer cell line) to which the tested extracts were administered. Specifically, the T-rich extracts more effectively increased endogenous GSH levels measured by flow cytometry than did the HT-rich compounds. Also, olive oil compounds contributed variously to the expression of genes implicated in the cell antioxidant machinery, as indicated by quantitative PCR. Therefore, the relationship between structure and function in redox regulation is complex and merits the combination of tests. Given that factors like the production and storage regimen of the plants are major determinants of the composition of the generated extracts, we propose that specific conditions should be adopted in order to achieve their maximum biological activity. These results followed by others in the same direction could provide a solid basis for the production of functional foods enriched in olive oil extracts with potential antioxidant action in vivo.


2014 ◽  
Vol 22 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Ines WILLERSHAUSEN ◽  
Mike BARBECK ◽  
Nicole BOEHM ◽  
Robert SADER ◽  
Brita WILLERSHAUSEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document