The Influence of Three Additives on the Setting Reaction Kinetics and Mechanical Strength Evolution of [Alpha]-Tricalcium Phosphate Cements

2011 ◽  
Vol 493-494 ◽  
pp. 397-402
Author(s):  
H.A.I. Cardoso ◽  
M. Motisuke ◽  
Cecília A.C. Zavaglia

Among the calcium phosphate cements, the system based on alpha-tricalcium phosphate (α-TCP) combines several interesting properties. However, these cements have their use limited to low load applications. The main objective of this study is to evaluate the influence of three different additives on the setting reaction kinetics and mechanical strength evolution of calcium phosphate cements as a function of time. The cement was obtained by mixing α-TCP powder with four different aqueous solutions containing or not containing disodium hydrogen phosphate (Na2HPO4), citric acid (C6H8O7) and/or tannic acid (C76H52O46). It was observed that two cement samples, one of them containing Na2HPO4 and C6H8O7 and another containingNa2HPO4 and C76H52O46 in the liquid phase, presented faster setting reaction and higher mechanical properties. These cements are more suitable for application as bone cement.

2014 ◽  
Vol 604 ◽  
pp. 204-207 ◽  
Author(s):  
Zilgma Irbe ◽  
Guna Krieke ◽  
Kristine Salma-Ancane ◽  
Liga Berzina-Cimdina

Conventional calcium phosphate bone cements are self setting water based pastes. Recently pre-mixed calcium phosphate bone cements have been proposed that have non-aqueous fluid as liquid phase of the paste. Such cements thus only start setting reaction in contact with body fluids. In this work the properties (cohesion, compressive strength, phase composition) of pre-mixed calcium phosphate cements based on α-tricalcium phosphate and calcium dihydrogen phosphate monohydrate are described. Properties of several cement compositions are examined and compared to properties of β-tricalcium phosphate and calcium dihydrogen phosphate monohydrate based cements. It was found that α-tricalcium phosphate and calcium dihydrogen phosphate monohydrate based cements have higher compressive strength (10 - 15 MPa) than corresponding β-tricalcium phosphate and calcium dihydrogen phosphate monohydrate based cements (10 - 6 MPa). Out of examined cement paste liquids (glycerol, polyethylene glycol and polypropylene glycol) cements using glycerol as the liquid phase had higher compressive strength and are more cohesive.


2014 ◽  
Vol 604 ◽  
pp. 184-187 ◽  
Author(s):  
Zilgma Irbe ◽  
Dagnija Loca ◽  
Ivita Bistrova ◽  
Liga Berzina-Cimdina

Conventional calcium phosphate bone cements are self setting water based pastes. Recently pre-mixed calcium phosphate bone cements have been proposed that have non-aqueous fluid as liquid phase of the paste. Such cements thus only start setting reaction in contact with body fluids. In this work the properties (cohesion, compressive strength, phase composition) of pre-mixed calcium phosphate cements based on α-tricalcium phosphate and calcium dihydrogen phosphate monohydrate are described. Properties of several cement compositions are examined and compared to properties of β-tricalcium phosphate and calcium dihydrogen phosphate monohydrate based cements. It was found that α-tricalcium phosphate and calcium dihydrogen phosphate monohydrate based cements have higher compressive strength (10 - 15 MPa) than corresponding β-tricalcium phosphate and calcium dihydrogen phosphate monohydrate based cements (10 - 6 MPa). Out of examined cement paste liquids (glycerol, polyethylene glycol and polypropylene glycol) cements using glycerol as the liquid phase had higher compressive strength and are more cohesive.


2012 ◽  
Vol 727-728 ◽  
pp. 1164-1169 ◽  
Author(s):  
Mônica Beatriz Thürmer ◽  
Rafaela Silveira Vieira ◽  
Juliana Machado Fernandes ◽  
Wilbur Trajano Guerin Coelho ◽  
Luis Alberto Santos

Calcium phosphate cements have bioactivity and osteoconductivity and can be molded and replace portions of bone tissue. The aim of this work was to study the obtainment of α-tricalcium phosphate, the main phase of calcium phosphate cement, by wet reaction from calcium nitrate and phosphoric acid. There are no reports about α-tricalcium phosphate obtained by this method. Two routes of chemical precipitation were evaluated and the use of two calcinations temperatures to obtain the phase of cement. The influence of calcination temperature on the mechanical properties of cement was evaluated. Cement samples were characterized by particle size analysis, X-ray diffraction, mechanical strength and scanning electron microscopy. The results demonstrate the strong influence of synthesis route on the crystalline phases of cement and the influence of concentration of reactants on the product of the reaction, as well as, on the mechanical properties of cement.


2012 ◽  
Vol 8 (9) ◽  
pp. 3500-3508 ◽  
Author(s):  
Marco A. Lopez-Heredia ◽  
Matilde Bongio ◽  
Marc Bohner ◽  
Vincent Cuijpers ◽  
Louis A.J.A. Winnubst ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 3745
Author(s):  
Michiyo Honda ◽  
Yusuke Kawanobe ◽  
Kohei Nagata ◽  
Ken Ishii ◽  
Morio Matsumoto ◽  
...  

Bacterial adhesion to the calcium phosphate surface is a serious problem in surgery. To prevent bacterial infection, the development of calcium-phosphate cements (CPCs) with bactericidal properties is indispensable. The aim of this study was to fabricate antibacterial CPCs and evaluate their biological properties. Silver-containing tricalcium phosphate (Ag-TCP) microspheres consisting of α/β-TCP phases were synthesized by an ultrasonic spray-pyrolysis technique. The powders prepared were mixed with the setting liquid to fabricate the CPCs. The resulting cements consisting of β-TCP and hydroxyapatite had a porous structure and wash-out resistance. Additionally, silver and calcium ions could be released into the culture medium from Ag-TCP cements for a long time accompanied by the dissolution of TCP. These data showed the bioresorbability of the Ag-TCP cement. In vitro antibacterial evaluation demonstrated that both released and immobilized silver suppressed the growth of bacteria and prevented bacterial adhesion to the surface of CPCs. Furthermore, histological evaluation by implantation of Ag-TCP cements into rabbit tibiae exhibited abundant bone apposition on the cement without inflammatory responses. These results showed that Ag-TCP cement has a good antibacterial property and good biocompatibility. The present Ag-TCP cements are promising for bone tissue engineering and may be used as antibacterial biomaterials.


2007 ◽  
Vol 361-363 ◽  
pp. 323-326 ◽  
Author(s):  
Edgar Benjamin Montufar ◽  
C. Gil ◽  
Tania Traykova ◽  
M.P. Ginebra ◽  
Josep A. Planell

The design and processing of 3D macroporous bioactive scaffolds is one of the milestones for the progress of bone tissue engineering and bone regeneration. Calcium phosphate based ceramics are among the most suitable materials, due to their similarity to the bone mineral. Specifically, beta-tricalcium phosphate (β-TCP) is known to be a resorbable and bioactive material, with well established applications as bone regeneration material. The aim of this work is to explore a new route to obtain β-TCP macroporous scaffolds starting from calcium phosphate cements. To this end foamed calcium phosphate cement, composed of alpha tricalcium phosphate as starting powder was used as initial material. The set foamed structures, made of calcium deficient hydroxyapatite (CDHA) were sintered to obtain the final β-TCP macroporous architecture. The interconnected macroporosity was maintained, whereas the porosity in the nanometric range was strongly reduced by the sintering process. The sintering produced also an increase in the mechanical properties of the scaffold.


Sign in / Sign up

Export Citation Format

Share Document