scholarly journals Bactericidal and Bioresorbable Calcium Phosphate Cements Fabricated by Silver-Containing Tricalcium Phosphate Microspheres

2020 ◽  
Vol 21 (11) ◽  
pp. 3745
Author(s):  
Michiyo Honda ◽  
Yusuke Kawanobe ◽  
Kohei Nagata ◽  
Ken Ishii ◽  
Morio Matsumoto ◽  
...  

Bacterial adhesion to the calcium phosphate surface is a serious problem in surgery. To prevent bacterial infection, the development of calcium-phosphate cements (CPCs) with bactericidal properties is indispensable. The aim of this study was to fabricate antibacterial CPCs and evaluate their biological properties. Silver-containing tricalcium phosphate (Ag-TCP) microspheres consisting of α/β-TCP phases were synthesized by an ultrasonic spray-pyrolysis technique. The powders prepared were mixed with the setting liquid to fabricate the CPCs. The resulting cements consisting of β-TCP and hydroxyapatite had a porous structure and wash-out resistance. Additionally, silver and calcium ions could be released into the culture medium from Ag-TCP cements for a long time accompanied by the dissolution of TCP. These data showed the bioresorbability of the Ag-TCP cement. In vitro antibacterial evaluation demonstrated that both released and immobilized silver suppressed the growth of bacteria and prevented bacterial adhesion to the surface of CPCs. Furthermore, histological evaluation by implantation of Ag-TCP cements into rabbit tibiae exhibited abundant bone apposition on the cement without inflammatory responses. These results showed that Ag-TCP cement has a good antibacterial property and good biocompatibility. The present Ag-TCP cements are promising for bone tissue engineering and may be used as antibacterial biomaterials.

2012 ◽  
Vol 727-728 ◽  
pp. 1187-1192 ◽  
Author(s):  
Rafaela Silveira Vieira ◽  
Wilbur Trajano Guerin Coelho ◽  
Mônica Beatriz Thürmer ◽  
Juliana Machado Fernandes ◽  
Luis Alberto Santos

The calcium phosphate cements (CPCs) based on α-tricalcium phosphate (α-TCP) are highly attractive for use in medicine and odontology, since they have similar chemical and phase composition of mineral phase of bones (calcium deficient hydroxyapatite (CDHA)). However, one of the biggest difficulties for use of this type of cement is its low mechanical strength due to the presence of undesirable phases, such as β-tricalcium phosphate. The route for obtaining α-TCP is at high temperature by solid state reaction, mixing calcium carbonate and calcium pyrophosphate. The aim of this work was to obtain calcium phosphate cements with improved strength, by studying the obtaining of α-TCP at temperatures of 1300, 1400 and 1500°C. The samples were analyzed by crystalline phases, pH, setting time, particle size, in vitro test (Simulated Body Fluid), porosity, density and compressive strength. The results show that the synthesis temperatures influence strongly the phases of powders obtained and the mechanical properties of cement, being unnecessary quenching for obtaining pure α-TCP.


Biomaterials ◽  
2007 ◽  
Vol 28 (6) ◽  
pp. 956-965 ◽  
Author(s):  
Marion Julien ◽  
Ibrahim Khairoun ◽  
Racquel Z. LeGeros ◽  
Severine Delplace ◽  
Paul Pilet ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Rania M. Khashaba ◽  
Mervet Moussa ◽  
Christopher Koch ◽  
Arthur R. Jurgensen ◽  
David M. Missimer ◽  
...  

Aim. Physicochemical mechanical andin vitrobiological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated.Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy.In vitrocytotoxicity of CPCs and control was assessed.Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility.Conclusions. Type III CPCs show promise for dental applications.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3693
Author(s):  
Yurii P. Sharkeev ◽  
Ekaterina G. Komarova ◽  
Valentina V. Chebodaeva ◽  
Mariya B. Sedelnikova ◽  
Aleksandr M. Zakharenko ◽  
...  

A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous–crystalline structure that exhibits excellent biocopatibility. The structure and physico–chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from −456 to −535 mV, while the zeta potential (ZP) decreased from −53 to −40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200–250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous–crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous–crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.


2012 ◽  
Vol 727-728 ◽  
pp. 1164-1169 ◽  
Author(s):  
Mônica Beatriz Thürmer ◽  
Rafaela Silveira Vieira ◽  
Juliana Machado Fernandes ◽  
Wilbur Trajano Guerin Coelho ◽  
Luis Alberto Santos

Calcium phosphate cements have bioactivity and osteoconductivity and can be molded and replace portions of bone tissue. The aim of this work was to study the obtainment of α-tricalcium phosphate, the main phase of calcium phosphate cement, by wet reaction from calcium nitrate and phosphoric acid. There are no reports about α-tricalcium phosphate obtained by this method. Two routes of chemical precipitation were evaluated and the use of two calcinations temperatures to obtain the phase of cement. The influence of calcination temperature on the mechanical properties of cement was evaluated. Cement samples were characterized by particle size analysis, X-ray diffraction, mechanical strength and scanning electron microscopy. The results demonstrate the strong influence of synthesis route on the crystalline phases of cement and the influence of concentration of reactants on the product of the reaction, as well as, on the mechanical properties of cement.


Bone Research ◽  
2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Hockin HK Xu ◽  
Ping Wang ◽  
Lin Wang ◽  
Chongyun Bao ◽  
Qianming Chen ◽  
...  

2012 ◽  
Vol 8 (9) ◽  
pp. 3500-3508 ◽  
Author(s):  
Marco A. Lopez-Heredia ◽  
Matilde Bongio ◽  
Marc Bohner ◽  
Vincent Cuijpers ◽  
Louis A.J.A. Winnubst ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3075
Author(s):  
Sok Kuan Wong ◽  
Yew Hoong Wong ◽  
Kok-Yong Chin ◽  
Soelaiman Ima-Nirwana

Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.


2020 ◽  
Vol 5 (3) ◽  
pp. 644-658 ◽  
Author(s):  
M.A. Goldberg ◽  
P.A. Krohicheva ◽  
A.S. Fomin ◽  
D.R. Khairutdinova ◽  
O.S. Antonova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document