The Out-Rotator of Spin Traveling Wave Pump on Magnetic Fluid

2012 ◽  
Vol 503 ◽  
pp. 3-7
Author(s):  
Meng Zhao ◽  
Ji Bin Zou ◽  
Jing Shang

According to researching the spin traveling wave pump, the relationship of the characteristics of magnetic fluid and the press is investigated under the spin magnetic field by the theory method. The relationship of moving, magnetic field and press is investigated by the decoupled computation between the magnetic field and force. The method is scientificity and rationality by the testing. The distributing shape of magnetic fluid in the pump is affected by the adding magnetic field under the spin magnetic field when the magnetic fluid is filled in the pump. At the same time, the adding magnetic field is affected by magnetic particles of magnetic fluid. The magnetic fluid can be moved by the effect of the adding magnetic field in the pump. The flux of magnetic fluid increases with the magnetic field.

2014 ◽  
Vol 896 ◽  
pp. 444-447
Author(s):  
Yi Hua Fan ◽  
Liao Yong Lou ◽  
Yu Ming Chen

The Phenomenon of a Magnetic Controlled Ferrofluid Flow in the Flat Plate Laminar Flow System is Discussed in this Paper. the Ferrofluid Flow is One Kind of Colloid Mixture, which is Composited by the Magnetic Particles, Carrier Fluid and Surfactant. its Motion is Followed the Fluid Dynamics and can be Controlled by a Magnetic Field. from the Theoretic Analysis and the Experimental Test, the Coefficient of Viscosity of the Ferrofluid Flow will be Affected by the Magnetic Field. Thus, an Experimental Rig is Built to Test the Influences of the Gap of the Plate and the Strength and Direction of the Magnetic Field for Several Ferrofluid Flows with Different Dividing Rates of Volume. Experimental Results Showed that the Coefficient of Viscosity of the Ferrofluid Flow is Almost Not Upgrading in a Wide Gap Condition by the Magnetic Field, but as the Gap is Smaller, the Coefficient of Viscosity will be Promoted Obviously. Furthermore, Enhancing the Magnetic Field, it will be Increase the Coefficient of Viscosity of the Ferrofluid Flow. from the Experimental Results, the Relationship of the Magnetic Field, Coefficient of Viscosity of Ferrofluid Flow and the Carrier Fluid can be Confirmed.


2012 ◽  
Vol 512-515 ◽  
pp. 1455-1458 ◽  
Author(s):  
Xin Zhi He ◽  
De Cai Li ◽  
Hai Na Zhang ◽  
Zhi Li Zhang

In order to meet the requirements of the static seal at large diameter in chemical industry, aerospace industry and military industry, we designed a magnetic fluid static seal at large diameter flange and set up a test rig. We studied the effect of magnetic fluid static seal on the test rig. Finally, we obtained the relationship between the anti-pressure capacity and the number of the seal stages. We also calculated the distribution of the magnetic field in the seal gap and the anti-pressure capacity in theory. The theoretical analysis and the experiment result indicate that the design of the magnetic fluid static seal at large diameter flange is feasible and can be used to meet the practical problems.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012050
Author(s):  
K P Kirdyashev

Abstract The experimental data showing the relationship of excitation of microwave oscillations with abnormally transport of electrons across the magnetic field in turbulent plasma are presented. The mechanism of the formation of the discharge current due to scattering of drift electrons in the near-electrode layers of the electric discharges on microwave oscillations has been substantiated. The conditions for the manifestation of the turbulent mechanism of anomalous electron transport through the magnetic barrier at the boundary of the toroidal electric discharge have been studied most fully. The mobility of electrons across a magnetic field is one of the main parameters of electric discharges that use crossed electric and magnetic fields for technological purposes.


1986 ◽  
Vol 90 ◽  
pp. 137-140
Author(s):  
V.L. Khokhlova ◽  
J.B. Rice ◽  
W.H. Wehlau

AbstractVery accurate spectroscopic line profiles have been obtained at various phases during the 3d.618 period of the magnetic variable Ap-star Θ Aur. These profiles were observed using a Reticon detector at the coudé focus of the 3.5 metre Canada-France-Hawaii telescope. The mapping of Si, Cr and Fe over the surface of the star was done by solving the Inverse Problem. Complex spotty structure has been revealed with the number of Fe spots found being as great as six. The distribution of Cr is found to be similar to Fe but with less detailed structure. Si is distributed quite differently from Fe and Cr. Discussion of the relationship of the magnetic field maximum phase and the light curve along with the maps of the distribution of elements suggests that the principal spots of Fe and Cr are in phase with the light variability but they are 90° out of phase with Si and the magnetic field variation. We are surprised by the Si variability seeming to be 90° out of phase with the light variability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abbas Moghanizadeh ◽  
Fakhreddin Ashrafizadeh ◽  
Jaleh Varshosaz ◽  
Mahshid Kharaziha ◽  
Antoine Ferreira

AbstractArtificial vascular treatment is an emerging interdisciplinary subject of medicine. Although the use of artificial vessels has led to many successful advancements, blood clotting remains a major challenge, especially in terms of mural clots created along the vessel wall that do not completely block the vessel. The main objective of this study is to present a method for declotting artificial vessels. This research introduces a novel thrombectomy technique in artificial vessels by employing nano-magnetic particles under a rotating magnetic field to remove mural clots in artificial vessels. A mathematical model describes the relationship between process parameters. In vitro tests confirm the feasibility of nano-magnetic thrombectomy in cleaning and declotting artificial vessels. The results show that the clot fragments are nano-sized, which eliminates the risk of distal emboli as a concern of using current atherectomy techniques. Meanwhile, no damage to the artificial vessels is observed. The results show that the frequency of rotating the magnetic field has the greatest effect on clot removal. The conceptual principles stated in this study also have the potential to be used in other vascular depositions, such as the accumulation of lipids, and calcification atherosclerosis.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


Author(s):  
Giti Karimi-Moghaddam ◽  
Richard D. Gould ◽  
Subhashish Bhattacharya

In this paper, the performance of pool boiling heat transfer using a binary temperature sensitive magnetic fluid in the presence of a non-uniform magnetic field is investigated numerically. By using a binary magnetic fluid, enhanced boiling heat transfer is obtained by thermomagnetic convection without deterioration of properties of the fluid. This work is aimed at gaining a qualitative understanding the magnetic field effects on boiling heat transfer enhancement of magnetic fluids. In order to accomplish this, the boiling process and the effects of position of the external magnetic field on flow pattern and heat transfer are investigated in a 2D rectangular domain using COMSOL Multiphysics simulation software. Finally, the boiling curves for a binary temperature sensitive magnetic fluid and its base fluid (without magnetic particles) are compared for various applied heat flux magnitudes.


Sign in / Sign up

Export Citation Format

Share Document