Improved Oxidation Resistance of SiС-Based Ceramic Matrix Composites by In Situ Reaction with Si3N4 Filler

2012 ◽  
Vol 512-515 ◽  
pp. 775-778
Author(s):  
Bin Wu ◽  
Zhen Wang ◽  
Shao Ming Dong

SiC-Si3N4 powders and modified SiC-based ceramic matrix composites (CMCs) were fabricated using polycarbosilane (PCS), divinylbenzene (DVB) and Si3N4 filler. Si3N4 was introduced into CMCs fabricated through polymer infiltration and pyrolysis (PIP) to lower down the carbon content by in-situ carbothermal reaction, which derived from pyrolyzed PCS-DVB. The oxidation resistance and three point bending strength of modified C/SiC composites were effectively enhanced. The phase composition, microstructure of SiC-Si3N4 powders and modified C/SiC composites were investigated by XRD, SEM and TEM.

2012 ◽  
Vol 512-515 ◽  
pp. 681-684 ◽  
Author(s):  
Jin Shan Yang ◽  
Shao Ming Dong ◽  
Ping He ◽  
Qing Gang Li ◽  
Bin Wu ◽  
...  

Because of its combined characteristics of metals and ceramics, such as low density, high Young’s modulus, thermal and chemical resistance with low hardness, high electrical and thermal conductivity, it was expected that the introduction of Ti3SiC2 to fiber reinforced ceramic matrix can make the composite own some unique properties. In the present research, Ti3SiC2 powders used as inert fillers were fabricated by the in-situ reaction between Ti and polycarbosilane mixtures. The purity of Ti3SiC2 powders analyzed by XRD was determined by RIR method, which is a semi-quantitative XRD analysis. The results showed that the purity of Ti3SiC2 powders is about 96%. Cf/Ti3SiC 2-SiC composites are obtained by polymer infiltration and pyrolysis process using Ti3SiC2 powders as the inert fillers. The bending strength of Cf/Ti3SiC2-SiC composites was about 160 MPa.


2009 ◽  
Vol 79-82 ◽  
pp. 477-480 ◽  
Author(s):  
Li Hua Dong ◽  
Wei Ke Zhang ◽  
Jian Li ◽  
Yan Sheng Yin

Near full dense B4C ceramic matrix composites were fabricated from Ti-Al-B4C system by combining high energy milling with hot pressing sintering. The effect of different content of Ti-Al on the mechanical properties and microstructure of the as-prepared composites was investigated. A TiAl/B4C composite, whose typical bending strength and fracture toughness are 437.3 MPa and 4.85 MPa•m1/2, respectively, was made. The sintering mechanism and reinforcement mechanism were discussed with the assistant of X-Ray diffraction and electron microscopy.


2008 ◽  
Vol 368-372 ◽  
pp. 1050-1052 ◽  
Author(s):  
Yong Lian Zhou ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
Qi Kun Wang ◽  
Chang Rui Zhang

In this paper the preparation of carbon fiber reinforced ultra-high temperature ceramic matrix composites was reported. Polymer infiltration and pyrolysis process was used to prepare 2D C/TaC-SiC, C/NbC-SiC, and C/ZrC-SiC composites. The fracture strengths of all the samples were around 300MPa and toughness around 10MPa-m1/2. Standard oxyacetylene torch tests (>3000°C, 30s) showed that the minimum ablative rate of 2D C/SiC-ZrC was as low as 0.026 mm/s, much smaller than that of 2D C/SiC composites (0.088mm/s).


Cerâmica ◽  
2013 ◽  
Vol 59 (351) ◽  
pp. 351-359 ◽  
Author(s):  
F. M. Bertan ◽  
A. P. Novaes de Oliveira ◽  
O. R. K. Montedo ◽  
D. Hotza ◽  
C. R. Rambo

This work reports on the characterization of ZrSiO4 particulate-reinforced Li2O-ZrO2-SiO2-Al2O3 (LZSA) glass-ceramic matrix composites. The typical physical/mechanical and chemical properties of the glass batches and the composites were measured. A composition with 60 wt.% ZrSiO4 was preliminarily selected because it demonstrated the highest values of bending strength (190 MPa) and deep abrasion resistance (51 mm³). To this same composition was given a 7 wt.% bentonite addition in order to obtain plasticity behavior suitable for extrusion. The sintered samples (1150 ºC for 10 min) presented a thermal linear shrinkage of 14% and bending strength values of 220 MPa.


2019 ◽  
Vol 956 ◽  
pp. 244-252
Author(s):  
Xiao Ju Gao ◽  
Chao Li ◽  
Hasigaowa ◽  
Zhi Peng Li ◽  
Yu Guang Bao ◽  
...  

The quasi-static and dynamic compressive mechanical behaviors of two kinds of fiber reinforced SiC-matrix composites including 2D-C/SiC and 2D-SiC/SiC were investigated. Their compressive behaviors of materials at room temperature and strain rate from 10-4 to 104 /s were studied. The fracture surfaces and damage morphology were observed by scanning electron microscopy (SEM). The results showed that the dynamic failure strengths of the two kinds of fiber reinforced SiC-matrix composites obey the Weibull distribution. The Weibull modulus of the two materials were 13.70 (2D-C/SiC) and 5.66 (2D-SiC/SiC), respectively. It was found that the two kinds of fiber reinforced ceramic matrix composites presented a transition from brittle to tough with the decrease of strain rate. The 2D-SiC/SiC materials demonstrated a more HYPERLINK "http://dict.cnki.net/dict_result.aspx?searchword=%e6%98%be%e8%91%97%e7%9a%84&tjType=sentence&style=&t=remarkable"significant strain rate sensitivity and smoother fracture surface compared to the 2D-C/SiC composites, implying that the former composites present brittle features. This was because the SiC/SiC composites possessed high bonding strength in interface of fiber/fiber and fiber/matrix is very strong.


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Deng-hao Ma ◽  
En-ze Jin ◽  
Jun-ping Li ◽  
Zhen-hua Hou ◽  
Jian Yin ◽  
...  

Continuous silicon carbide fiber-reinforced silicon carbide ceramic matrix composites (SiCf/SiC) are promising as thermal structural materials. In this work, the microstructure and static mechanical properties of 3D-SiCf/SiC with PyC, SiC, and PyC/SiC and without an interface prepared via polymer infiltration and pyrolysis (PIP) were investigated systematically in this paper. The results show that the microstructure and static mechanical properties of SiCf/SiC with an interphase layer were superior to the composites without an interlayer, and the interface debondings are existing in the composite without an interphase, resulting in a weak interface bonding. When the interphase is introduced, the interfacial shear strength is improved, the crack can be deflected, and the fracture energy can be absorbed. Meanwhile, the shear strength of the composites with PyC and PyC/SiC interfaces was 118 MPa and 124 MPa, respectively, and showing little difference in bending properties. This indicates that the sublayer SiC of the PyC/SiC multilayer interface limits the binding state and the plastic deformation of PyC interphase, and it is helpful to improve the mechanical properties of SiCf/SiC.


Sign in / Sign up

Export Citation Format

Share Document