Ultrasonic Assisted Diamond Turning of Hardened Steel for Mould Manufacturing

2012 ◽  
Vol 516 ◽  
pp. 437-442 ◽  
Author(s):  
Benjamin Bulla ◽  
Fritz Klocke ◽  
Olaf Dambon ◽  
Martin Hünten

Diamond turning of steel parts is conventionally not possible due to the high tool wear. However this process would enable several different applications with high economical innovative potential. One technology that enables the direct manufacturing of steel components with monocrystalline diamond is the ultrasonic assisted diamond turning process. This technology has been investigated over the years within the Fraunhofer IPT and is now commercialized by its spin-off company son-x. Surface roughness in the range of Ra < 5 nm can be achieved and the diamond tool wear is reduced by a factor of 100 or higher. In order to prove the industrial suitability of the process, two aspherical shapes and one large spherical geometry have been manufactured. The possible form accuracies and surface roughness values will be described in this paper, as well as the tool wear. The goal was to achieve optical surface roughness and a shape accuracy below 300 nm.

2006 ◽  
Vol 532-533 ◽  
pp. 57-60 ◽  
Author(s):  
Yuan Liang Zhang ◽  
Zhi Min Zhou ◽  
Zhi Hui Xia

Ultrasonic vibration is applied to diamond turning of special stainless steel to decrease diamond tool wear and improve the surface quality of the workpieces. It reviews the principle of diamond turning of special stainless steel by applying ultrasonic vibration combined with gas shield. Compared with the ordinary machining method, cutting temperature and cutting force are greatly reduced when machining by application of ultrasonic vibration, and the appetency between a diamond tool and Ferrous atom of a workpiece is also minimized as gas shield application. The Experiments of cutting special stainless steel workpieces show that the surface roughness Ra is less than 0.15μm and flank wear-width is less than 5μm when cutting distance is up to 2000m. It takes research on the effect of cutting parameters to surface roughness and tool wear. The experiment result shows that the amplitude is the most important factor which effects tool wear and surface roughness most.


2011 ◽  
Vol 5 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Akira Shinozaki ◽  
◽  
Yoshiharu Namba

In recent years, in a field of space science, large and high precision aspherical molding dies which are used to make aspherical thin foil mirrors for the hard Xray telescope are needed. Therefore to establish the ultra-precision cutting method for these dies is overly expected. In the actual manufacturing, the largemolding die is required to have both high accurate shape accuracy and very small surface roughness as the finished product. To machine the large molding die which has these high accuracies, we should know factors to cause various errors such as shape error and surface roughness and so on. Because it is necessary to machine the large molding die by using NC machining system that automatically corrects shape error finally. Especially, the tool wear of diamond tool is one of the big factors that influences shape error and surface roughness, so it needs to correct the amount of tool wear while ultra-precision cutting of large molding dies. From these points of view, in this research, a tool wear of diamond tool which is used in the ultra-precision cutting of large electroless nickel coated molding dies is considered with an on-machine measurement and observation system.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4836-4840
Author(s):  
ROBERT STRAKA ◽  
◽  
JOZEF PETERKA ◽  
TOMAS VOPAT ◽  
◽  
...  

The article compares two cutting edge preparation methods and their influence on the machined surface roughness of the difficult to cut nickel alloy Inconel 718 and the tool wear of cutting inserts made of cemented carbide. The manufacturing and preparation process of cutting inserts used in the experiment were made by Dormer Pramet. The preparation methods used in the experiment were drag finishing and brushing. Cutting parameters did not change during the whole turning process to maintain the same conditions in each step of the process and were determined based on tests for a semi-finishing operation of the turning process. To obtain durability of 25 to 30 minutes with controlled development of the tool wear the cutting parameters were determined with cooperation with the cutting inserts manufacturer.


2021 ◽  
pp. 2150111
Author(s):  
MURAT KIYAK

The surface roughness is a crucial factor in machining methods. The most effective factors on surface roughness are feed rate and tool nose radius. Due to the many advantages of wiper (multi-nose radius) inserts, their importance and use has been increasing recently. The purpose of this paper is to investigate the effect of wiper inserts on surface roughness and tool wear. In this study, conventional inserts and wiper inserts were experimentally compared separately in milling and turning operations. Compared to conventional inserts, the surface roughness values obtained using wiper inserts improved by 33% in turning operations and approximately 40% in milling operations. It was observed that the production time in the turning process was reduced by about 25% in the case of using wiper inserts compared to the use of conventional inserts. In milling, this ratio was determined to be approximately 43% due to the fact that it has multiple cutting edge. It has been observed that the use of wiper inserts in machining methods creates a significant time and cost saving advantage.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 573
Author(s):  
Zhang ◽  
Guo ◽  
Chen ◽  
Fu ◽  
Zhao

The surface generation mechanism of the Cu alloys in ultra-precision diamond turning is investigated by both simulation and experimental methods, where the effects of the cutting parameters on the surface characteristics are explored, including the workpiece spindle speed, the cutting depth, the feed rate and the nose radius of the diamond tool. To verify the built model, the cutting experiments are conducted at selected parameters, where the causes of the error between the simulation and the machining results are analyzed, including the effects of the materials microstructure and the diamond tool wear. In addition, the nanometric surface characteristics of the Cu alloys after the diamond turning are identified, including the finer scratching grooves caused by the tool wear, the formation of the surface burs and the adhesion of graphite. The results show that the built model can be basically used to predict the surface topography for the selection of the appropriate machining parameters in the ultra-precision diamond turning process.


2019 ◽  
Vol 287 ◽  
pp. 30-34
Author(s):  
Zwelinzima Mkoko ◽  
Khaled Abou-El-Hossein

In the globally competitive environment, surface roughness and finer tolerances are becoming stringent and certainly most critical for optical components. The aim of this study is to determine the effects of diamond turning process parameters on surface finish when diamond turning RSA 443 alloy having high silicon content. This alloy is a new grade of aluminum that has a potential to be used for production of various optical components. The experiments were conducted based on the Box-Behnken design with three diamond-turning parameters varied at three levels. A mathematical regression model was developed for predicting surface roughness. Further, the analysis of variance was used to analyze the influence of cutting parameters and their interaction in machining. The developed prediction model reveals that cutting speed and feed rate are the most dominant diamond turning factors influencing surface roughness.


2012 ◽  
Vol 229-231 ◽  
pp. 517-520 ◽  
Author(s):  
Zhi Min Zhou ◽  
Xiao Yan Li ◽  
Yuan Xin Qu ◽  
Jian Na

Titanium alloys, as difficult-to-cut materials, have poor machinability due to their superior mechanical properties, heat resistance and corrosion resistance. High cutting temperature and great cutting force that will greatly accelerate tool wear often occurs in titanium alloys cutting process. In this paper, an ultrasonic vibration turning method was used to lower diamond tool wear during TC4 titanium alloy turning process. Ultrasonic vibration turning tests were carried out with various cutting parameters. Experimental results indicated that there’s a significant reduction of the wear rate of diamond tools by means of ultrasonic vibration in TC4 turning process. For ultrasonic vibration turning, spindle speed, the amplitude and frequency of vibration of the tool are the greatest impact of tool wear, followed by feed rate, then the cutting depth.


Sign in / Sign up

Export Citation Format

Share Document