Diamond Turning of Special Stainless Steel by Applying Ultrasonic Vibration with Gas Shield

2006 ◽  
Vol 532-533 ◽  
pp. 57-60 ◽  
Author(s):  
Yuan Liang Zhang ◽  
Zhi Min Zhou ◽  
Zhi Hui Xia

Ultrasonic vibration is applied to diamond turning of special stainless steel to decrease diamond tool wear and improve the surface quality of the workpieces. It reviews the principle of diamond turning of special stainless steel by applying ultrasonic vibration combined with gas shield. Compared with the ordinary machining method, cutting temperature and cutting force are greatly reduced when machining by application of ultrasonic vibration, and the appetency between a diamond tool and Ferrous atom of a workpiece is also minimized as gas shield application. The Experiments of cutting special stainless steel workpieces show that the surface roughness Ra is less than 0.15μm and flank wear-width is less than 5μm when cutting distance is up to 2000m. It takes research on the effect of cutting parameters to surface roughness and tool wear. The experiment result shows that the amplitude is the most important factor which effects tool wear and surface roughness most.

2012 ◽  
Vol 229-231 ◽  
pp. 517-520 ◽  
Author(s):  
Zhi Min Zhou ◽  
Xiao Yan Li ◽  
Yuan Xin Qu ◽  
Jian Na

Titanium alloys, as difficult-to-cut materials, have poor machinability due to their superior mechanical properties, heat resistance and corrosion resistance. High cutting temperature and great cutting force that will greatly accelerate tool wear often occurs in titanium alloys cutting process. In this paper, an ultrasonic vibration turning method was used to lower diamond tool wear during TC4 titanium alloy turning process. Ultrasonic vibration turning tests were carried out with various cutting parameters. Experimental results indicated that there’s a significant reduction of the wear rate of diamond tools by means of ultrasonic vibration in TC4 turning process. For ultrasonic vibration turning, spindle speed, the amplitude and frequency of vibration of the tool are the greatest impact of tool wear, followed by feed rate, then the cutting depth.


2012 ◽  
Vol 497 ◽  
pp. 1-5
Author(s):  
Xiao Dan Xie ◽  
Yong Li ◽  
Cam Vinh Duong ◽  
Ahmed Al-Zahrani

Traditionally, single point diamond turning (SPDT) can not process ferreous metals because of acute tool wear. Ultrasonic vibration-assisted cutting(UVC) provides a promising solution for the problem. In this paper, for the aim of directly obtaining mirror surface on die steels, UVC method was used combining with SPDT process. Experiments were carried out on an ultra precision turning machine, cutting parameters and vibration parameters were well-chosen, and two kind of feed rates, two kinds of prevailing die steels were experimented. Mirror surfaces were successfully achieved on face turning, with the best roughness of Ra16.6nm. And the surface roughness, surface texture and tool wear in machining process were discussed.


2012 ◽  
Vol 516 ◽  
pp. 437-442 ◽  
Author(s):  
Benjamin Bulla ◽  
Fritz Klocke ◽  
Olaf Dambon ◽  
Martin Hünten

Diamond turning of steel parts is conventionally not possible due to the high tool wear. However this process would enable several different applications with high economical innovative potential. One technology that enables the direct manufacturing of steel components with monocrystalline diamond is the ultrasonic assisted diamond turning process. This technology has been investigated over the years within the Fraunhofer IPT and is now commercialized by its spin-off company son-x. Surface roughness in the range of Ra < 5 nm can be achieved and the diamond tool wear is reduced by a factor of 100 or higher. In order to prove the industrial suitability of the process, two aspherical shapes and one large spherical geometry have been manufactured. The possible form accuracies and surface roughness values will be described in this paper, as well as the tool wear. The goal was to achieve optical surface roughness and a shape accuracy below 300 nm.


2012 ◽  
Vol 490-495 ◽  
pp. 1551-1554
Author(s):  
Jian Zhong Zhang ◽  
Xin Wang ◽  
Yue Zhang

It has been one of the difficulties that high-precision small hole on stainless steel is machined. The supersonic vibration boring acoustic system is installed in the lathe. The supersonic wave energy applies to tool to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Surface quality and shape precision is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of stainless steel are also summarized. The test results show that the ultrasonic vibration boring by double cutter is of very superior cutting mechanism and is a high-precision thin - long deep - hole machining of stainless steel materials, efficient cutting methods.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 972 ◽  
Author(s):  
Xiaojun Li ◽  
Zhanqiang Liu ◽  
Xiaoliang Liang

The application of AISI 304 austenitic stainless steel in various industrial fields has been greatly increased, but poor machinability classifies AISI 304 as a difficult-to-cut material. This study investigated the tool wear, surface topography, and optimization of cutting parameters during the machining of an AISI 304 flange component. The machining features of the AISI 304 flange included both cylindrical and end-face surfaces. Experimental results indicated that an increased cutting speed or feed aggravated tool wear and affected the machined surface roughness and surface defects simultaneously. The generation and distribution of surface defects was random. Tearing surface was the major defect in cylinder turning, while side flow was more severe in face turning. The response surface method (RSM) was applied to explore the influence of cutting parameters (e.g., cutting speed, feed, and depth of cut) on surface roughness, material removal rate (MRR), and specific cutting energy (SCE). The quadratic model of each response variable was proposed by analyzing the experimental data. The optimization of the cutting parameters was performed with a surface roughness less than the required value, the maximum MRR, and the minimum SCE as the objective. It was found that the desirable cutting parameters were v = 120 m/min, f = 0.18 mm/rev, and ap = 0.42 mm for the AISI 304 flange to be machined.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Harun Gokce

Stainless steels with unique corrosion resistance are used in applications with a wide range of fields, especially in the medical, food, and chemical sectors, to maritime and nuclear power plants. The low heat conduction coefficient and the high mechanical properties make the workability of stainless steel materials difficult and cause these materials to be in the class of hard-to-process materials. In this study, suitable cutting tools and cutting parameters were determined by the Taguchi method taking surface roughness and cutting tool wear into milling of Custom 450 martensitic stainless steel. Four different carbide cutting tools, with 40, 80, 120, and 160 m/min cutting speeds and 0.05, 0.1, 0.15, and 0.2 mm/rev feed rates, were selected as cutting parameters for the experiments. Surface roughness values and cutting tool wear amount were determined as a result of the empirical studies. ANOVA was performed to determine the significance levels of the cutting parameters on the measured values. According to ANOVA, while the most effective cutting parameter on surface roughness was the feed rate (% 50.38), the cutting speed (% 81.15) for tool wear was calculated.


2020 ◽  
Vol 896 ◽  
pp. 293-298
Author(s):  
Nicolae Craciunoiu ◽  
Emil Nicusor Patru ◽  
Adrian Sorin Rosca ◽  
Dumitru Panduru ◽  
Marin Bica

In order to control the temperature during milling process of aluminum alloys and keeping as minimum as possible, the choice of the cutting parameters and their optimization is very important, both for the tool wear but also for the surface quality of machined surface. The main purpose of this paper is to find the optimum values of the milling parameters (rotational speed and depth of cut) so that the minimum value for the temperature to be obtained. Using adequate experimental conditions with contact measurements techniques (thermocouple K-type) carried out on the some types of aluminum alloys and the appropriate statistical instruments, the most influencing cutting parameters and their values on the cutting temperature can be found. The results are presented both analytical and graphical.


2013 ◽  
Vol 567 ◽  
pp. 33-38 ◽  
Author(s):  
Lai Zou ◽  
Ming Zhou

Ultrasonic vibration assisted turning has significant improvements in processing of intractable materials compared to conventional turning. This paper presents a theoretical investigation of tool wear in single point diamond turning of ferrous metals based on numerical simulation. Finite element modeling and simulation of ultrasonic vibration turning process were performed, aimed at optimizing a series of technological parameters in the process of machining, reducing tool wear and improving surface quality as much as possible. The results revealed that the cutting speed and depth of cut are two crucial factors for tool wear, unlike the other parameters of vibration frequency, amplitude and flank angle. Moreover, this technological measure has observably decreased the cutting force and cutting temperature, so as to obtain superior surface finish.


2012 ◽  
Vol 516 ◽  
pp. 311-316 ◽  
Author(s):  
Kyung Hee Park ◽  
Kyeong Tae Kim ◽  
Yun Hyuck Hong ◽  
Hon Jong Choi ◽  
Young Jae Choi

Ultrasonic machining can be applied for the machining of difficult-to-cut materials using ultrasonical oscillation in an axial direction on top of tool rotation, which can cause reduction of cutting temperature and tool wear. In this study, the experiments were performed on a DMG ULTRASONIC 20 linear machine tool using diamond tools in both conventional and ultrasonic vibration assisted machining. The machining performance was evaluated and compared for both cases in terms of cutting forces, machined surface roughness and tool wear. And the combination technique of 3D surface topography measurement and image processing was applied for the tool wear progress. Overall, the experimental results showed that ultrasonic machining had less tool wear and lower cutting forces at low cutting speed compared to conventional machining. Also surface roughness was slightly lower in ultrasonic machining than that without ultrasonic vibration.


2014 ◽  
Vol 887-888 ◽  
pp. 1236-1239
Author(s):  
Wang Hao ◽  
Yu Zhang ◽  
Qi Ming Xie

Single-point diamond turning (SPDT) is a machining process making use of a monocrystal diamond tool which possesses nanometric edge sharpness, form reproducibility and wear resistance. The process is capable of producing components with micrometre to submicrometre form accuracy and surface roughness in the nanometre range. The cutting parameters that can make an effect on surface finish and form accuracy of SPDT such as spindle speedfeed ratedepth of cut and so on.


Sign in / Sign up

Export Citation Format

Share Document