Growth of GaAsP by Solid Source Molecular Beam Epitaxy

2012 ◽  
Vol 531-532 ◽  
pp. 159-162
Author(s):  
Gang Cheng Jiao ◽  
Zheng Tang Liu ◽  
Feng Shi ◽  
Lian Dong Zhang ◽  
Wei Cheng ◽  
...  

The GaAsP crystal material grown on GaAs substrate has been extensive applications in the area of photoelectronic device. There because GaAsP have advantageous photoelectronic performance and adjustable band gap. We report growth of GaAs1-xPx grown on GaAs substrate by solid source molecular beam epitaxy (SSMBE). On the basis of the optimized Ⅴ/Ⅲ flux ratio, appropriate growth rate, and the substrate temperature for sample growth, different composition GaAs1-xPx layers had been grown on GaAs top. Lattice-mismatched became the big challenges to high-quality epitaxial growth of the GaAs1-x Px materials on GaAs substrate. The crystalline quality, surface morphology were performed by applying high resolution X-ray diffractometry (HRXRD) and high resolution optical microscopy. The etched region and internal defect were also investigated.

Scanning ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Yu-Chiao Lin ◽  
Ikai Lo ◽  
Hui-Chun Shih ◽  
Mitch M. C. Chou ◽  
D. M. Schaadt

M-plane GaN thin films were grown on LiAlO2 substrates under different N/Ga flux ratios by plasma-assisted molecular beam epitaxy. An anisotropic growth of M-plane GaN was demonstrated against the N/Ga flux ratio. As the N/Ga flux ratio decreased by increasing Ga flux, the GaN surface trended to a flat morphology with stripes along [112-0]. According to high-resolution X-ray diffraction analysis, Li5GaO4 was observed on the interface between GaN and LiAlO2 substrate. The formation of Li5GaO4 would influence the surface morphology and crystal quality.


1987 ◽  
Vol 103 ◽  
Author(s):  
J. M. Vandenberg ◽  
M. B. Panish ◽  
R. A. Hamm

ABSTRACTHigh-resolution X-ray diffraction (HRXRD) studies have been cardied out to determine the structural perfection and periodicity for a number of high-quality InGaAsfInP superlattices grown by gas source molecular beam epitaxy. X-ray scans were carried out with a compact four-crystal monochromator resulting in a resolution of one molecular layer (∼3,Å), which enables one to observe very small variations in the periodic structure. Sharp and strong higher-order satellite reflections in the XRD profiles were observed indicating smooth interfaces with well-defined modulated structures. Excellent computer simulated fits of the X-ray satellite pattern could be generated based on a kinematical XRD step model which assumes ideally sharp interfaces, and periodic structural parameters such as the strain in the well could be extracted. Our results3 demonstrate that HRXRD in conjunction with the kinematical step model is a very sensitive method to assess periodic structural modifications in superlattices as a result of the precise growth conditions in the gas source MBE system.


1995 ◽  
Vol 399 ◽  
Author(s):  
M. Shima ◽  
L. Salamanca-Riba ◽  
G. Springholz ◽  
G. Bauer

ABSTRACTMolecular beam epitaxy was used to grow EuTe(x)/PbTe(y) short period superlattices with x=1-4 EuTe(111) monolayers alternating with y≈3x PbTe monolayers. The superlattices were characterized by transmission electron microscopy and high resolution x-ray diffraction. Regions with double periodicity were observed coexisting with areas of nominal periodicity. The sample with x=3.5 and y=9, for example, contains regions with double periodicity of x=7 and y=17. X-ray diffraction measurements confirm the formation of the double periodicity in these samples by the appearance of weak satellites in between the satellites of the nominal periodicity. The double periodicity in the superlattice is believed to result from interdiffusion during the growth. A model for this process is presented.


Author(s):  
В.В. Ратников ◽  
Д.В. Нечаев ◽  
А.В. Мясоедов ◽  
О.А. Кошелев ◽  
В.Н. Жмерик

Multiple-crystal X-ray diffraction and a multi-beam optical stress sensor were used to study AlN/c-sapphire templates grown by plasma-assisted molecular beam epitaxy. The influence of the nucleation and buffer layers growth regimes, temperature, the ratio between Al and N* growth fluxes on the stress generation and the character of the dislocation structure were analyzed. Templates with the best crystal quality with screw and edge threading dislocation densities in a range of 4∙10^8 and 8∙10^9 cm-2, respectively, were obtained at the flux ratio of Al to N* close to 1 by using two-stage temperature regimes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bing Yan ◽  
Hongyu Liang ◽  
Yongfeng Liu ◽  
Weihua Liu ◽  
Wenhui Yuan ◽  
...  

Gallium antimonide (GaSb) is considered an ideal substrate for heterostructure growth via molecular beam epitaxy. A significant aspect that inhibits the widespread application of infrared plane-array detector growth on GaSb is the starting substrate surface quality. In this study, the chemical mechanical polishing of GaSb wafers is investigated by considering the effects of the polishing pad, polishing solution, polishing time and pH buffer on their surface morphology and roughness. The surface morphology and root mean square (RMS) roughness of the free-standing wafers are characterized using a white light interferometer, a laser interferometer and an atomic force microscope. X-ray tomography is employed to measure the surface crystalline quality and strain defects of the samples subjected to the polishing treatments. The results show that with the optimum polishing condition, the polished GaSb wafers demonstrate high-quality surfaces without haze, scratches or strain defect regions. The peak to valley value is 5.0 μm and the RMS roughness can be controlled at less than 0.13 nm. A buffer layer grown on the GaSb surface with molecular beam epitaxy is examined via atomic force microscopy and high-resolution X-ray diffraction, which show a low RMS roughness of 0.159 nm, a well-controlled two-dimensional growth mode and a full width half maximum of the Bragg diffraction peak of 14.2”, indicating high-quality GaSb wafers. Thus, this work provides useful guidelines for achieving GaSb wafers with high-quality surfaces that show significant promise for substrate applications.


Sign in / Sign up

Export Citation Format

Share Document