scholarly journals Low-Cost Activated Grape Seed-Derived Hydrochar through Hydrothermal Carbonization and Chemical Activation for Sulfamethoxazole Adsorption

2019 ◽  
Vol 9 (23) ◽  
pp. 5127 ◽  
Author(s):  
Elena Diaz ◽  
Francisco Javier Manzano ◽  
John Villamil ◽  
Juan Jose Rodriguez ◽  
Angel F. Mohedano

Activated carbons were prepared by chemical activation with KOH, FeCl3 and H3PO4 of the chars obtained via hydrothermal carbonization of grape seeds. The hydrochars prepared at temperatures higher than 200 °C yielded quite similar proximate and ultimate analyses. However, heating value (24.5–31.4 MJ·kg−1) and energy density (1.04–1.33) significantly increased with carbonization temperatures between 180 and 300 °C. All the hydrochars showed negligible BET surface areas, while values between 100 and 845 m2·g−1 were measured by CO2 adsorption at 273 K. Activation of the hydrochars with KOH (activating agent to hydrochar ratio of 3:1 and 750 °C) led to highly porous carbons with around 2200 m2·g−1 BET surface area. Significantly lower values were obtained with FeCl3 (321–417 m2·g−1) and H3PO4 (590–654 m2·g−1), showing these last activated carbons important contributors to mesopores. The resulting materials were tested in the adsorption of sulfamethoxazole from aqueous solution. The adsorption capacity was determined by the porous texture rather than by the surface composition, and analyzed by FTIR and TPD. The adsorption equilibrium data (20 °C) fitted the Langmuir equation well. The KOH-activated carbons yielded fairly high saturation capacity reaching up to 650 mg·g−1.

2020 ◽  
Vol 38 (9-10) ◽  
pp. 450-463
Author(s):  
Xiya Li ◽  
Jieqiong Qiu ◽  
Yiqi Hu ◽  
Xiaoyuan Ren ◽  
Lu He ◽  
...  

The production of low-cost biologically activated carbons (BACs) is urgent need of environmental protection and ecological sustainability. Hence, walnut shells were treated by traditional pyrolysis, direct KOH impregnation and combined activation composed of hydrothermal carbonization and two-step H3PO4- and pyrolysis-activation process to obtain porous carbon with high adsorption capacity. It was found that the best adsorption capacity for iodine and organic dye methylene blue (MB) can be obtained using the KOH impregnation at impregnation ratio of 1:1 or combined activation comprising of 2 h H3PO4 activation and 1 h pyrolysis activation at 1000°C. The produced KOH, H3PO4/pyrolysis activated BACs at the optimum conditions are superior to that of commercial ACs, 9.4 and 1.3 times for MB removal, 4 and 4.5 times for iodine number respectively. Characterization results demonstrated their porous structure with very good textural properties such as high BET surface area (1689.1 m2/g, 1545.3 m2/g) and high total pore volume (0.94 cm3/g, 0.96 cm3/g). The N2 adsorption-desorption isotherm of H3PO4/pyrolysis activated hydrochar suggested the co-existence of micro and meso-pores. Moreover, they are more effective for the removal of Fe(III) and Cr(VI) from aqueous solution than the commercial AC, suggesting a promising application in the field of water treatment.


2013 ◽  
Vol 545 ◽  
pp. 129-133 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Khanthima Hemra ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Activated carbons were prepared by chemical activation from scrap tire with two chemical reagents, NaOH and KOH. The activation consisted of different impregnation of a reagent followed by carbonization in nitrogen at 700°C. The resultant activated carbons were characterized in terms of BET surface area, methylene blue adsorption and iodine number. The influence of each parameter of the synthesis on the properties of the activated carbons was discussed, and the action of each hydroxide was methodically compared. It is the first time that preparation parameters and pore texture characteristics are simultaneously considered for two closely related activating agents of the same char precursor. Whatever the preparation conditions, it was shown that KOH led to the most microporous materials, having surface areas and adsorption properties (methylene blue adsorption and iodine number) higher than those obtained with NaOH, which was in agreement with some early works. However, the surface areas, methylene blue adsorption and iodine number obtained in the present study were much higher than in previous studies, up to 951 m2/g, 510 mg/g and 752 mg/g, respectively, using scrap tire waste char:KOH equal to 1:1. The thorough study of the way each preparation parameter influenced the properties of the final materials bought insight into the activation mechanisms. Each time it was possible; the results of scrap tire waste chemically activated with hydroxides were compared with those obtained with anthracites; explanations of similarities and differences were systematically looked for.


Author(s):  
Atakan Toprak ◽  
Turkan Kopac

Abstract Activated carbons of various features were produced by the impregnation of local coal samples that were taken from Kilimli region of Zonguldak (Turkey) with chemical agents KOH, NaOH and ZnCl2 at different temperatures (600–800 °C) and concentrations (1:1–6:1 agent:coal), for their evaluation in CO2 adsorption studies. BET, DR, t-plot and DFT methods were used for the characterization of carbon samples based on N2 adsorption data obtained at 77 K. The pore sizes of activated carbons produced were generally observed to be in between 13–25 Å, containing highly micropores. Mesopore formations were higher in samples treated with ZnCl2. The highest value for the BET surface area was found as 2,599 m2 g−1 for the samples treated with KOH at 800 °C with a KOH to coal ratio of 4:1. It was observed that the CO2 adsorption capacities obtained at atmospheric pressure and 273 K were considerably affected by the micropore volume and surface area. The highest CO2 adsorption capacities were found as 9.09 mmol/g (28.57 % wt) and 8.25 mmol g−1 (26.65 % wt) for the samples obtained with KOH and NaOH treatments, respectively, at ratio of 4:1. The activated carbons produced were ordered as KOH>NaOH>ZnCl2, according to their surface areas, micropore volumes and CO2 adsorption capacities. The low-cost experimental methods developed by the utilization of local coals in this study enabled an effective capture of CO2 before its emission to atmosphere.


2018 ◽  
Vol 8 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jung Park ◽  
Gi Lee ◽  
Sang Hwang ◽  
Ji Kim ◽  
Bum Hong ◽  
...  

In this study, a feasible experiment on adsorbed natural gas (ANG) was performed using activated carbons (ACs) with high surface areas. Upgraded ACs were prepared using chemical activation with potassium hydroxide, and were then applied as adsorbents for methane (CH4) storage. This study had three principal objectives: (i) upgrade ACs with high surface areas; (ii) evaluate the factors regulating CH4 adsorption capacity; and (iii) assess discharge conditions for the delivery of CH4. The results showed that upgraded ACs with surface areas of 3052 m2/g had the highest CH4 storage capacity (0.32 g-CH4/g-ACs at 3.5 MPa), which was over two times higher than the surface area and storage capacity of low-grade ACs (surface area = 1152 m2/g, 0.10 g-CH4/g-ACs). Among the factors such as surface area, packing density, and heat of adsorption in the ANG system, the heat of adsorption played an important role in controlling CH4 adsorption. The released heat also affected the CH4 storage and enhanced available applications. During the discharge of gas from the ANG system, the residual amount of CH4 increased as the temperature decreased. The amount of delivered gas was confirmed using different evacuation flow rates at 0.4 MPa, and the highest efficiency of delivery was 98% at 0.1 L/min. The results of this research strongly suggested that the heat of adsorption should be controlled by both recharging and discharging processes to prevent rapid temperature change in the adsorbent bed.


2015 ◽  
Vol 69 (5) ◽  
pp. 561-565 ◽  
Author(s):  
Muhammad Shoaib ◽  
Hassan Al-Swaidan

The effects of the reaction vessel pressure on the BET surface area, pore volume and pore size of the synthesis of sliced activated carbons (SAC) at 850?C starting from 0.10 to 0.40 bars were investigated. Other synthetic variables like dwell time, CO2 flow rate and heating ramp rate were kept constant during the whole study. Methodology involves a single step procedure using the mixture of gases (N2 and CO2). During activation flow rate of both gases are kept at 150 and 50ml/min respectively. The BET surface areas of the SAC prepared at 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40 bar after 30 minutes activation time are 666, 745, 895, 1094, 835, 658 and 625 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, Energy dispersive spectroscopy (EDS), Transmission electron microscopy (TEM) for nano particle size were also carried out that also confirms the same trend.


Author(s):  
Victor Odhiambo Shikuku ◽  
Wilfrida N. Nyairo ◽  
Chrispin O. Kowenje

Biochars have been extensively applied in soil remediation, carbon sequestration, and in climate change mitigation. However, in recent years, there has been a significant increase in biochar research in water treatment due to their stupendous adsorptive properties for various contaminants. This is attributed to their large surface areas, pore structures, chemical compositions, and low capital costs involved making them suitable candidates for replacing activated carbons. This chapter discusses the preparation methods and properties of biochars and their removal efficacy for organic contaminants and microbial control. Factors affecting adsorption and the mechanisms of adsorption of organic pollutants on biochars are also concisely discussed. Biochars present environmentally benign and low-cost adsorbents for removal of both organic pollutants and microbial control for wastewater purification systems.


2013 ◽  
Vol 47 (4) ◽  
pp. 347-364 ◽  
Author(s):  
MS Islam ◽  
MA Rouf

A review of the production of activated carbons from waste biomass has been presented. The effects of various process parameters on the pyrolysis stage have been reviewed. Influences of activating conditions, physical and chemical, on the active carbon properties have been discussed. Under certain process conditions several active carbons with BET surface areas, ranging between 250 and 2410 m2/g and pore volumes of 0.022 and 91.4 cm3/g, have been produced. A comparison in characteristics and uses of activated carbons from waste biomass with those of commercial carbons has been made. Waste biomass being highly efficient, low cost and renewable sources of activated carbon production. Bangladesh J. Sci. Ind. Res. 47(4), 347-364, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.14064


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Mojoudi ◽  
N. Mirghaffari ◽  
M. Soleimani ◽  
H. Shariatmadari ◽  
C. Belver ◽  
...  

AbstractThe purpose of this study was the preparation, characterization and application of high-performance activated carbons (ACs) derived from oily sludge through chemical activation by KOH. The produced ACs were characterized using iodine number, N2 adsorption-desorption, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The activated carbon prepared under optimum conditions showed a predominantly microporous structure with a BET surface area of 2263 m2 g−1, a total pore volume of 1.37 cm3 g−1 and a micro pore volume of 1.004 cm3 g−1. The kinetics and equilibrium adsorption data of phenol fitted well to the pseudo second order model (R2 = 0.99) and Freundlich isotherm (R2 = 0.99), respectively. The maximum adsorption capacity based on the Langmuir model (434 mg g−1) with a relatively fast adsorption rate (equilibrium time of 30 min) was achieved under an optimum pH value of 6.0. Thermodynamic parameters were negative and showed that adsorption of phenol onto the activated carbon was feasible, spontaneous and exothermic. Desorption of phenol from the adsorbent using 0.1 M NaOH was about 87.8% in the first adsorption/desorption cycle and did not decrease significantly after three cycles. Overall, the synthesized activated carbon from oily sludge could be a promising adsorbent for the removal of phenol from polluted water.


2000 ◽  
Vol 18 (4) ◽  
pp. 373-383 ◽  
Author(s):  
Laila B. Khalil ◽  
Badie S. Girgis ◽  
Tarek A.M. Tawfik

Locally discarded olive oil waste was tested as a potential raw material for the preparation of activated carbons. Chemical activation by impregnation with H3PO4 was employed using acid solutions of varying concentration in the range 30–70% followed by thermal treatment at 500–700°C. The development of porosity was followed from an analysis of the nitrogen adsorption isotherms obtained at 77 K by applying standard BET and t-plot methods. Carbons with low to moderate surface areas (273–827 m2/g) and total pore volumes (0.27–0.69 ml/g), containing essentially micropores with diameters of 8.2 Å up to 12.4 Å were obtained. Increasing the concentration of impregnant led to the development of porosity with the optimum being attained at 60% H3PO4. Phosphoric acid is visualized as acting both as an acid catalyst promoting bond-cleavage reactions and the formation of new crosslinks and also as a reactant which combines with organic species to form phosphate and polyphosphate bridges which connect and crosslink biopolymer fragments. The present study suggests many applications for environmental pollution control, firstly by utilizing accumulating low-cost agricultural by-products and secondly by producing a multi-purpose high-capacity adsorbent useful in the remediation of micropollutants in various water courses.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Nurgul Ozbay ◽  
Adife Seyda Yargic

Activated carbons were prepared by carbonization of tomato paste processing industry waste at 500°C followed by chemical activation with KOH, K2CO3, and HCl in N2 atmosphere at low temperature (500°C). The effects of different activating agents and impregnation ratios (25, 50, and 100 wt.%) on the materials’ characteristics were examined. Precursor, carbonized tomato waste (CTW), and activated carbons were characterized by using ultimate and proximate analysis, thermogravimetric analysis (TG/DTG), Fourier transform-infrared (FT-IR) spectroscopy, X-ray fluorescence (XRF) spectroscopy, point of zero charge measurements (pHPZC), particle size analyzer, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, nitrogen adsorption/desorption isotherms, and X-ray diffraction (XRD) analysis. Activation process improved pore formation and changed activated carbons’ surface characteristics. Activated carbon with the highest surface area (283 m3/g) was prepared by using 50 wt.% KOH as an activator. According to the experimental results, tomato paste waste could be used as an alternative precursor to produce low-cost activated carbon.


Sign in / Sign up

Export Citation Format

Share Document