Analysis of Vibro-Acoustic Modulations in Nonlinear Acoustics Used for Impact Damage Detection - Numerical and Experimental Study

2013 ◽  
Vol 558 ◽  
pp. 341-348 ◽  
Author(s):  
Łukasz Pieczonka ◽  
Andrzej Klepka ◽  
Wieslaw Jerzy Staszewski ◽  
Tadeusz Uhl ◽  
Francesco Aymerich

The paper investigates experimentally the effect of low-frequency vibration on nonlinear vibro-acoustic wave modulations applied to the detection of Barely Visible Impact Damage (BVID) in a composite plate. Finite Element (FE) modeling was used in a pretest stage to identify different motion scenarios of delaminated surfaces and relate them to natural frequencies of the damaged plate. In particular the opening-closing and frictional sliding actions of the defected interfaces have been considered. Subsequently, the identified frequencies have been used for low frequency excitation in nonlinear acoustic experiments on a composite plate with impact damage.

2013 ◽  
Vol 12 (1) ◽  
pp. 243-250
Author(s):  
Błażej Meronk ◽  
Krzysztof Wilde

The paper presents the experimental study on the inter-modulation method for the diagnostics of concrete elements. The tests were conducted on a concrete plate subjected to ultrasonic waves and low frequency vibrations. The nonlinear acoustic effects, recorded in the experiments, made it possible to detect the presence of damaged zones. Further studies are necessary to establish the relation between the sidebanes of frequency spectra and the size of the damaged zone.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1336
Author(s):  
Wei Fan ◽  
Hong Lu ◽  
Yongquan Zhang ◽  
Xiangang Su

The dynamic vibration of the gear coupling-rotor system (GCRS) caused by misalignment is an important factor of low frequency vibration and noise radiation of the naval marine. The axial misalignment of gear coupling is inevitable owing to mass eccentricity, and is unconstrained in axial direction at high-speed operation. Therefore, the dynamic model of GCRS is proposed, considering gear-coupling misalignment and contact force in this paper. The whole motion differential equation of GCRS is established based on the finite element method. Moreover, the numerical calculation method of meshing force, considering the uniform distribution load on contact surface, is presented, and the mathematical predictive time–frequency characteristics are analyzed by the Newmark stepwise integral approach. Finally, a reduced-scale application of the propulsion shaft system is utilized to validate the effectiveness of the proposed dynamic model. For the sensibility to low-frequency vibration, the natural frequencies and vibration modes of GCRS are analyzed through the processing and analysis of acceleration signal. The experimental dynamic response and main components of vibration are respectively consistent with mathematical results, which demonstrate the effectiveness of the proposed dynamic model of GCRS with misalignment. Furthermore, it also shows that the proposed finite element analysis and calculation method are suitable for complex shafting, providing a novel thought for dynamic analysis of the propeller–shaft–hull coupled system of marine.


2004 ◽  
Vol 18 (17n19) ◽  
pp. 2708-2712
Author(s):  
MAO-BIN HU ◽  
XIANG-ZHAO KONG ◽  
QING-SONG WU ◽  
ZHEN-GANG ZHU

The low frequency vibration energy absorption properties of granular materials have been investigated on an Invert Torsion Pendulum (ITP). The energy absorption rate of granular material changes nonlinearly with amplitude under low frequency vibration. The frequency of ITP system increases a little with granular materials in the holding cup. The vibration frequency of ITP system does not change with time.


2014 ◽  
Vol 13 (2) ◽  
pp. 283-290
Author(s):  
Błażej Meronk ◽  
Krzysztof Wilde

The paper presents the experimental study on the diagnostics of concrete elements with the use of nonlinear acoustic effects. The tests were conducted on a concrete plate subjected to ultrasonic waves modulated with and without an additional low frequency actuator. The experimental results showed that the new method based on the direct modulation of diagnostic ultrasonic waves also provided sub-harmonic frequencies that indicated the presence of damage. The new method does not require a low frequency actuator for generation of low frequency oscillations, and therefore, is more suitable for practical application.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
J. S. Kim ◽  
Y. F. Xu ◽  
W. D. Zhu

Abstract Riveted connections are widely used to join basic components, such as beams and panels, for engineering structures. However, accurately modeling joined structures with riveted connections can be a challenging task. In this work, an accurate linear finite element (FE) modeling method is proposed for joined structures with riveted connections to estimate modal parameters in a predictive manner. The proposed FE modeling method consists of two steps. The first step is to develop nonlinear FE models that simulate riveting processes of solid rivets. The second step is to develop a linear FE model of a joined structure with the riveted connections simulated in the first step. The riveted connections are modeled using solid cylinders with dimensions and material properties obtained from the nonlinear FE models in the first step. An experimental investigation was conducted to study accuracy of the proposed linear FE modeling method. A joined structure with six riveted connections was prepared and tested. A linearity investigation was conducted to validate that the test structure could be considered to be linear. A linear FE model of the test structure was constructed using the proposed method. Natural frequencies and corresponding mode shapes of the test structure were measured and compared with those from the linear FE model. The maximum difference of the natural frequencies was 1.63% for the first 23 out-of-plane elastic modes, and modal assurance criterion values for the corresponding mode shapes were all over 95%, which indicates high accuracy of the proposed linear FE modeling method.


Author(s):  
Rajesh Govindan ◽  
Suraj Prakash Harsha

In this paper, the dynamic characteristics of the human body were investigated by developing a 3-D finite element model based on 50th percentile anthropometric data for a 54 kg Indian male subject in standing position by considering human body segments as an ellipsoid. The finite element modal analysis is carried out to extract several low-frequency vibration modes and its vibration mode shapes were presented in this paper. The results show that the lowest natural frequency of the standing passenger model occurs in the fore-and-aft direction. The second natural frequency occurs in the lateral direction and the first order natural frequency of the standing passenger model in the vertical direction occurs at 5.379 Hz. The model will be helpful to predict the vibration response of human body under various vibration environment encounters in the railway vehicle.


2007 ◽  
Vol 353-358 ◽  
pp. 2479-2482
Author(s):  
Yan Jun Lu ◽  
Zhao Hui Ren ◽  
Hong Chen ◽  
Nai Hui Song ◽  
Bang Chun Wen

Because of wrong setting or long-term running of rotating machinery, the looseness may ouur in the bearing seats or bases. And also bring impact and rubbing of rotor-stator, That is the looseness and rub-impact coupling fault. In the paper,a mechanics model and a finite element model of a vertical dual-disk cantilever rotor- bearing system with coupling faults of looseness and rub-impact are set up. Based on the nonlinear finite element method and contact theory, the dynamical characteristices of the system under the influence of the looseness rigidity and impact-rub clearance is studied. The results show that the impact-rub of rotor-stator can reduce the low frequency vibration caused by looseness, and the impact-rub caused by looseness has obvious orientation. Also, the conclusion of diagnosing the looseness and rub-impact coupling faults is given in the end of the paper.


2012 ◽  
Vol 23 (13) ◽  
pp. 1433-1449 ◽  
Author(s):  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee-Kiong Soh

In recent years, several strategies have been proposed to improve the functionality of energy harvesters under broadband vibrations, but they only improve the efficiency of energy harvesting under limited conditions. In this work, a comprehensive experimental study is conducted to investigate the use of magnets for improving the functionality of energy harvesters under various vibration scenarios. First, the nonlinearities introduced by magnets are exploited to improve the performance of vibration energy harvesting. Both monostable and bistable configurations are investigated under sinusoidal and random vibrations with various excitation levels. The optimal nonlinear configuration (in terms of distance between magnets) is determined to be near the monostable-to-bistable transition region. Results show that both monostable and bistable nonlinear configurations can significantly outperform the linear harvester near this transition region. Second, for ultra-low-frequency vibration scenarios such as wave heave motions, a frequency up-conversion mechanism using magnets is proposed. By parametric study, the repulsive configuration of magnets is found preferable in the frequency up-conversion technique, which is efficient and insensitive to various wave conditions when the magnets are placed sufficiently close. These findings could serve as useful design guidelines when nonlinearity or frequency up-conversion techniques are employed to improve the functionality of vibration energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document