Optical Current Sensor Technology in Power System

2013 ◽  
Vol 562-565 ◽  
pp. 242-246
Author(s):  
Li Hui Wang ◽  
Jian Sun ◽  
Jian Fei Ji

With power voltage and capacity improved greatly, power transmission system put a higher demand on reliability and safe operation of electrical equipments. Electromagnetic sensors and other conventional detection equipment can no longer meet the needs of the power system, and new sensing measurement techniques led to optical current and voltage sensing technology. As their unique advantages, optical current sensing technology is get in-depth study and attention, and gradually used in power system engineering applications. Combined with domestic and foreign research progress of optical current sensor, we analyzed the basic principles of the photoelectric sensing technology and problems faced in power system applications and key technologies. Focused on sensing characteristic differences of photoelectric sensors and electromagnetic sensor, we analyzed the effects of photoelectric sensor on protection, monitoring and control, measurement systems in data processing and data transmission, and study the corresponding key technology. Combined with the development of modern power system, we prospect optical current sensor sensing technology opportunities and challenges in smart grid.

2021 ◽  
Vol 10 (2) ◽  
pp. 580-587
Author(s):  
Marwan Ahmed Abdullah Sufyan ◽  
Mohd Zuhaib ◽  
Mohd Rihan

The complexity and dynamics of the modern power system are continuously changing due to the penetration of a large number of renewable energy sources and changing load patterns. These growing complexities have caused numerous outages around the world, primarily due to the lack of situational awareness about the grid operating states. Rectification of this problem requires advanced sensing technology to accurately capture the dynamics of the system for better monitoring and control. Measurement of synchrophasors is a potential solution to improve situational awareness in the grid. The synchrophasors technology is now widely accepted throughout the world and has the potential to replace the existing SCADA system in monitoring and control of the power system. Their installation enables efficient resolution to substantially improve transmission system planning, maintenance, operation, and energy trading. This paper reviews the state of the art potential applications that the PMU based WAMC offers to the power system. It also includes technical perspectives, challenges, and future possibilities.


2014 ◽  
Vol 651-653 ◽  
pp. 543-546
Author(s):  
Xiao Wen Wang

Sensing technology is a rapid development of technology, is one of the main technology of modern information technology, developed countries in recent years the use of sensors in the information society a new understanding and evaluation, and sensor technology has been widely used in various fields. This paper mainly introduces the temperature sensor, pressure sensor, displacement sensor, the principle and application of the current sensor.


Author(s):  
Pusapally Srinivas ◽  
Lupthavisha Netam ◽  
Mohan Kumar Iyer

Indian power management system is one among the largest power system networks in the world. India has a complex power transmission network which is monitored by multi-level integrated systems installed at many control levels. The Indian power sector is expected to grow both in its installed capacity and energy demand which makes it extremely essential to equip the country’s power grid with novel applications of smart grid technologies. A technologically advanced architecture of power system could be beneficial to address issues at micro level and improve flexibility and robustness of the system. This research highlights technical advancements which are in practice in different countries. A conceptual design framework has been proposed which can be integrated with the existing energy management system and thus could potentially help in an improvised efficient monitoring and control system. Thus, help resolve chances of cascaded outages leading to blackouts.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 575
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Subsoiling has been acknowledged worldwide to break compacted hardpan, improve soil permeability and water storage capacity, and promote topsoil deepening and root growth. However, there exist certain factors which limit the wide in-field application of subsoiling machines. Of these factors, the main two are poor subsoiling quality and high energy consumption, especially the undesired tillage depth obtained in the field with cover crops. Based on the analysis of global adoption and benefits of subsoiling technology, and application status of subsoiling machines, this article reviewed the research methods, technical characteristics, and developing trends in five key aspects, including subsoiling shovel design, anti-drag technologies, technologies of tillage depth detection and control, and research on soil mechanical interaction. Combined with the research progress and application requirements of subsoiling machines across the globe, current problems and technical difficulties were analyzed and summarized. Aiming to solve these problems, improve subsoiling quality, and reduce energy consumption, this article proposed future directions for the development of subsoiling machines, including optimizing the soil model in computer simulation, strengthening research on the subsoiling mechanism and comprehensive effect, developing new tillage depth monitoring and control systems, and improving wear-resisting properties of subsoiling shovels.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


Hand ◽  
2021 ◽  
pp. 155894472110146
Author(s):  
Francisco R. Avila ◽  
Rickey E. Carter ◽  
Christopher J. McLeod ◽  
Charles J. Bruce ◽  
Davide Giardi ◽  
...  

Background Wearable devices and sensor technology provide objective, unbiased range of motion measurements that help health care professionals overcome the hindrances of protractor-based goniometry. This review aims to analyze the accuracy of existing wearable sensor technologies for hand range of motion measurement and identify the most accurate one. Methods We performed a systematic review by searching PubMed, CINAHL, and Embase for studies evaluating wearable sensor technology in hand range of motion assessment. Keywords used for the inquiry were related to wearable devices and hand goniometry. Results Of the 71 studies, 11 met the inclusion criteria. Ten studies evaluated gloves and 1 evaluated a wristband. The most common types of sensors used were bend sensors, followed by inertial sensors, Hall effect sensors, and magnetometers. Most studies compared wearable devices with manual goniometry, achieving optimal accuracy. Although most of the devices reached adequate levels of measurement error, accuracy evaluation in the reviewed studies might be subject to bias owing to the use of poorly reliable measurement techniques for comparison of the devices. Conclusion Gloves using inertial sensors were the most accurate. Future studies should use different comparison techniques, such as infrared camera–based goniometry or virtual motion tracking, to evaluate the performance of wearable devices.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 864 ◽  
Author(s):  
Ju Wang ◽  
Nicolai Spicher ◽  
Joana M. Warnecke ◽  
Mostafa Haghi ◽  
Jonas Schwartze ◽  
...  

With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking.


Sign in / Sign up

Export Citation Format

Share Document