Modelling Microstructural Effects on the Mechanical Behaviour of a Friction Stirred Channel Aluminium Alloy

2013 ◽  
Vol 577-578 ◽  
pp. 37-40
Author(s):  
Catarina Vidal ◽  
Virgínia Infante ◽  
Yoann Lage ◽  
Pedro Vilaça

Friction stir channelling (FSC) is a relatively new solid-state manufacturing technology able to produce conformal channels in a monolithic plate in a single step. During the FSC process the metal workpiece material is softened by the heat energy generated from dissipation during: plastic deformation, internal material flow and frictional work between the tool and the metal workpiece. The mechanical performance of a friction stirred channel aluminium alloy is affected by microstructure surrounding the channel. A new methodology that simulates a realistic 2D microstructure from experimental metallographic characterization and tensile tests was developed using the commercial software ABAQUS to study the mechanical behaviour of the friction stirred channel 5083-H111 aluminium alloy. Fourpoint bending tests were simulated and compared with experimental results. The RambergOsgood model was also adopted in the finite element analysis. It is seen from this investigation that microstructure can significantly affect the bending strength of friction stirred channel plates.

2013 ◽  
Vol 774-776 ◽  
pp. 1155-1159 ◽  
Author(s):  
Xiao Cong He

Friction stir welding (FSW) is a solid-state welding process where no gross melting of the material being welded takes place. Numerical modelling of the FSW process can provide realistic prediction of the thermo-mechanical behaviour of the process. Latest literature relating to finite element analysis (FEA) of thermo-mechanical behaviour of FSW process is reviewed in this paper. The recent development in thermo-mechanical modelling of FSW process is described with particular reference to two major factors that influence the performance of FSW joints: material flow and temperature distribution. The main thermo-mechanical modelling used in FSW process are discussed and illustrated with brief case studies from the literature.


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


2016 ◽  
Vol 45 (2) ◽  
pp. 118-122
Author(s):  
G. Gopala Krishna ◽  
P.Ram Reddy ◽  
M.Manzoor Hussain

In recent year’s aluminium and aluminium alloys are most widely used in many applications because of light weight, good formability and malleability, corrosion resistance, moderate strength and low cost. Friction Stir Welding (FSW) process is efficient and cost effective method for welding aluminium and aluminium alloys. FSW is a solid state welding process that means the material is not melted during the process. Complete welding process accomplishes below the melting point of materials so it overcomes many welding defects that usually happens with conventional fusion welding technique which were initially used for low melting materials. Though this process is initially developed for low melting materials but now process is widely used for a variety of other materials including titanium, steel and also for composites. The present butt jointed FSW experimental work has been done in two ways. Initially a comparison of tensile properties of friction stir (FS) welded similar aluminium alloy (AA6351 with AA6351) and dissimilar aluminium alloy (AA6351 with AA5083) combinations. Later the effect of impurities (copper and brass) in sheet form (0.1 mm thick) when used as insert in between two dissimilar aluminium alloy (AA6351 with AA5083) plates during FSW. Tensile tests were performed for these combinations and results were compared for with and without using strip material (copper and brass).


2013 ◽  
Vol 389 ◽  
pp. 260-266 ◽  
Author(s):  
Xiao Cong He

Friction stir welding (FSW) is a rapidly emerging joining technology due to significant advancements in tooling and process development. Latest literature relating to finite element analysis (FEA) of mechanical behaviour of FSW joints is reviewed in this paper. The recent development in FEA of mechanical behaviour of FSW joints is described with particular reference to two major factors that influence the performance of FSW joints: static behaviour and fatigue behaviour. The main FE methods used in FSW performance are discussed and illustrated with brief case studies from the literature.


Author(s):  
Elias Ledesma ◽  
Eduardo Aguilera ◽  
Gilberto Villalobos

An experimental study and a numerical simulation of friction stir welding (FSW) process on aluminum 6064 plates is presented. The numerical analysis is performed using finite element technique with LsDyna software and the Aleatory Lagrangian Eulerian (ALE) formulation. Input parameters on the FEM are the mechanical properties of the aluminum 6064 as workpiece and H13 steel properties as the tool. The finite element analysis results shown Von Mises stresses and plastic strain developed during the process. An experimental analysis was conducted with the variation of process parameters and the specimens obtained were evaluated by x-ray inspection, tensile tests, and hardness measurements.


2007 ◽  
Vol 558-559 ◽  
pp. 477-483 ◽  
Author(s):  
Sandrine Bozzi ◽  
Anne Laure Etter ◽  
Thierry Baudin ◽  
A. Robineau ◽  
Jean Claude Goussain

At the prospect of a lightening of the automobile structures, welded spots have been realized on a stacking of two sheets (a 6008 aluminium alloy on steel) by Friction Stir Welding (FSW). Different process parameters have been tested but only the influence of the dwell time will be described in the present paper. The dwell time corresponds to the time during which the probe stays in rotation at its bottom location before extracting. A study of the microstructures and the crystallographic textures associated to mechanical tests (shear and tensile tests) allowed to determine the best set of welding parameters. The recrystallized area around the welding spot has been characterized by Electron BackScattered Diffraction (EBSD). The aim of the present work is to identify the recrystallization mechanisms which occur during welding, and to understand the influence of the dwell time on the recrystallized area. A mechanism of continuous dynamic recrystallization has been identified since misorientation of sub-boundary increases close to the weld and this for all the dwell times tested. Elsewhere, it has been found that the increase of the dwell time induces a larger recrystallized zone.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
R. Suryanarayanan ◽  
V. G. Sridhar ◽  
L. Natrayan ◽  
S. Kaliappan ◽  
Anjibabu Merneedi ◽  
...  

Friction stir welding is a solid-state welding method that produces joints with superior mechanical and metallurgical properties. However, the negative effects of the thermal cycle during welding dent the mechanical performance of the weld joint. Hence, in this research study, the joining of aluminum tailor welded blanks by friction stir welding is carried out in underwater conditions by varying the welding parameters. The tensile tests revealed that the underwater welded samples showed better results when compared to the air welded samples. Maximum tensile strength of 229.83 MPa was obtained at 1000 rpm, 36 mm/min. The improved tensile strength of the underwater welded samples was credited to the suppression of the precipitation of the secondary precipitates due to the cooling action provided by the water. The lowest hardness of 72 HV was obtained at the edge of the stir zone which indicated the weakest region in the weld zone.


Sign in / Sign up

Export Citation Format

Share Document