Finite Element Modal Analysis for Face-Milling Cutter

2013 ◽  
Vol 589-590 ◽  
pp. 19-22
Author(s):  
Lu Ning Liu ◽  
Zhen Yu Shi ◽  
Zhan Qiang Liu

In this paper, a face-milling tool system is dealt with the Finite Element Modal Analysis (FEMA) using advanced contact technology functionalities. Dynamic characteristics analysis is performed and the stiffness contribution is included in the modal pre-stressed analysis. Natural frequencies and mode shapes of vibration are calculated. The FEMA is followed by experiments performed for different operating conditions of the face-milling system. The dynamic characteristics obtained in this paper can be used to optimize the face-milling cutter in high speed machining.

2014 ◽  
Vol 800-801 ◽  
pp. 408-413
Author(s):  
Lu Ning Liu ◽  
Zhen Yu Shi ◽  
Zhan Qiang Liu ◽  
Hao Song

This paper adopts composite structure system analysis method to perform modal analysis of high-speed face milling cutter which is mounted on the machine tool through FEM modal analysis. The key problem of this method is to obtain joint surface parameters between the machine tool spindle and face milling cutter through experimental modal analysis and MATLAB software. The joint surface parameters consist of linear stiffness, linear damping, rotation stiffness and rotation damping. After getting the frequency response function (FRF) at the tool tip of the face milling system through experimental modal analysis, the contact surface parameters can be used to eliminate the influence of the machine tool to get modal parameters of the face-milling cutter itself. Based on the finite element model of face milling cutter, composite structure system analysis method can be used easily to acquire the dynamic performance of the face milling system through FEM modal analysis, greatly to improve the reliability of modal analysis, and is helpful to the dynamic design and the structure improvement of high speed face milling cutter.


Author(s):  
Bruna Nabuco ◽  
Sandro D. Amador ◽  
Evangelos I. Katsanos ◽  
Ulf T. Tygesen ◽  
Erik Damgaard Christensen ◽  
...  

Abstract Aiming to ensure the structural integrity of an offshore structure, wave-induced responses have been measured during normal operating conditions. Operational Modal Analysis is applied to the data obtained from continuously monitoring the structure. Sensors placed only on the topside of an offshore platform are sufficient to provide information to identify the modal properties of the structure, such as natural frequencies, damping ratios, and mode shapes. A finite element model is created and updated in line with the identified dynamic properties for applying a modal expansion technique in the interest of accessing information at any point of the structure. Wave radars are also placed at the platform from which the wave forces are calculated based on basic industrial standard models. In this way, the wave kinematics are estimated according to the linear wave theory associated with Wheeler stretching. Since this study is related to offshore structures composed by slender elements, the wave forces are estimated using Morison formulation. By assigning typical values to the drag and inertia coefficients, wave loads are estimated and applied to the updated finite element model. For the diffraction effect, the wave load has also been evaluated according to MacCamy and Fuchs theory. The responses obtained from this procedure are compared with measured responses. In addition to describing the process, this paper presents a case study to verify the theory using monitoring data from a tripod jacket. Results indicate realistic response estimation that contributes to the knowledge about the state of the structure.


2010 ◽  
Vol 102-104 ◽  
pp. 605-609 ◽  
Author(s):  
Sheng Yuan Ji ◽  
Xian Li Liu ◽  
Fu Gang Yan ◽  
Cai Xu Yue ◽  
Xing Fa Zhao

Performance-based parametric design method for improving the face milling cutter design efficiency and ensuring the use of performance has an important significance. Three kinds of parameter design method are described in this paper, and parametric design of series of layer milling cutter is completed by modeling parametric design method with UG software. Also, modal analysis is made with FEM. Therefore the study results provide examples for optimization of tool structural and analysis of restrain vibration.


2012 ◽  
Vol 189 ◽  
pp. 443-447
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces a FEA method for vibration characteristics analysis of an aero-engine shrouded turbine blade and makes an actual modal analysis of this shrouded blade based on this method in UG software environment. The first six natural frequencies and mode shapes of this shrouded blade are calculated. And also, the dynamic characteristics of the shrouded turbine blade are discussed in detail according to the analysis results. The FEA method and the vibration characteristics analysis results in the paper can be used for optimal design and vibration safety verification of this aero-engine shrouded turbine blade.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


2012 ◽  
Vol 472-475 ◽  
pp. 2052-2058
Author(s):  
Ping Liao ◽  
Fang Ping Deng ◽  
Rui Ming Ding ◽  
Yu Xin Wu

This paper focuses on the static and dynamic characteristics of a high speed CNC lathe feeding system, which is analyzed by using the Finite Element Method (FEM). In this study, the location of the maximum stress and deformation is demonstrated and checked, natural frequency and corresponding vibration modes is extracted and analyzed respectively, and the way to build finite element model is simply conducted. Furthermore, vibration testing of the feeding system in X, Y, Z-Direction is carried out respectively, both the theoretical analysis and test results show good agreement with each other. Finally, some conclusions and reviews are made based on the analysis results, which provide some reliable basis for the reasonable operation and static and dynamic characteristics’ improvement for the feeding system.


2012 ◽  
Vol 490-495 ◽  
pp. 3023-3026
Author(s):  
Shao Zhong Jiang

The article aims at the cylinder head used in a high speed and higher-power diesel engine. In order to obtain the vibration characteristics and vibration frequency distributions. By means of modal analysis technology and finite element method (FEM), structural characteristics of the cylinder head using modal analysis is investigated. Firstly, a physical model of the cylinder head is built. Through the comparison of all the modal analysis results with different meshing densities, a tetrahedron ten-node element with length of 30mm is selected. Then finite element analysis of the model is taken by FEM software. The cylinder head’s modal parameters namely its natural frequency are calculated and its mode shapes are identified. The results can provide basis for the engine’s dynamic analysis and control of the diesel engine’s noise


Author(s):  
Azer A. Kasimzade ◽  
Sertaç Tuhta ◽  
Furkan Günday ◽  
Hakan Aydın

Operational Modal Analysis (OMA) is a one of the most popular method to extract the dynamic characteristics from ambient vibration response signals. In this study, the dynamic characteristics of a model of steel arch bridge with a bolt connection constructed in a 6.10 m span and 1.88 m height laboratory were determined by finite element method and operational modal analysis methods. Firstly, finite element model was created in SAP2000 software of model steel system and dynamic characteristic were obtained numerically. Then, accelerometers were placed where the displacements are high on points of the system and dynamic characteristics were determined by operational modal analysis method. The aim of this study is to obtain the dynamic parameters (frequency, damping ratio, mode shapes) of the model of the steel arch bridge accurately and reliably by operational modal analysis method by making use of ambient vibrations in the laboratory conditions. For this purpose, analytical analysis of the model of the steel arch bridge with finite element method and the dynamic parameters obtained as a result of the operational modal analysis of the model steel arch bridge were compared. Also, the modal assurance criterion (MAC) was used. Good compatibility was recognized between the results obtained for experimental and numerical procedures in terms of both the natural frequency and the mode of vibration. At the end of this study, reasonable correlation is obtained between mode shapes, frequencies and damping ratios. Analytical and Operational modal frequencies differences between 0.139 %–7.170 %.


2013 ◽  
Vol 455 ◽  
pp. 248-252
Author(s):  
Jun Yuan Sun ◽  
Ji Ming Xiao

The mud pump damming technology is a new idea put forward for realization of mechanization and automation of warping dam construction. A mud pump damming machine is studied, the FEM of the mud transfer pump rotor is built, modal analysis and rotor-dynamic analysis are carried out, natural frequencies and mode shapes under different constraints are obtained and the critical speeds of the pump rotor are determined, which will provide reference to improve the running reliability of the mud transfer pump rotor.


2013 ◽  
Vol 373-375 ◽  
pp. 16-19 ◽  
Author(s):  
Kang Li Shao ◽  
Feng Wang ◽  
Yong Hai Wu

Modal analysis and vibration analysis is the foundation of dynamic characteristics analysis and it is the most important methods to analyze the inherent characteristics and mode shapes of the system. In this paper, the airport tractor frame is taken as the research object and its geometric model is established by Pro / E, 10 order modal and shapes of tractor frame is obtained by ANSYS. The results showed that: the first and second frequency of the frame is avoided the engine idling, the outbreak frequency, and excitation frequency in normal driving road. The entire frame meets the requirement of the dynamic characteristics.


Sign in / Sign up

Export Citation Format

Share Document