scholarly journals Obtaining Dynamic Parameters by Using Ambient Vibration Recordings on Model of The Steel Arch Bridge

Author(s):  
Azer A. Kasimzade ◽  
Sertaç Tuhta ◽  
Furkan Günday ◽  
Hakan Aydın

Operational Modal Analysis (OMA) is a one of the most popular method to extract the dynamic characteristics from ambient vibration response signals. In this study, the dynamic characteristics of a model of steel arch bridge with a bolt connection constructed in a 6.10 m span and 1.88 m height laboratory were determined by finite element method and operational modal analysis methods. Firstly, finite element model was created in SAP2000 software of model steel system and dynamic characteristic were obtained numerically. Then, accelerometers were placed where the displacements are high on points of the system and dynamic characteristics were determined by operational modal analysis method. The aim of this study is to obtain the dynamic parameters (frequency, damping ratio, mode shapes) of the model of the steel arch bridge accurately and reliably by operational modal analysis method by making use of ambient vibrations in the laboratory conditions. For this purpose, analytical analysis of the model of the steel arch bridge with finite element method and the dynamic parameters obtained as a result of the operational modal analysis of the model steel arch bridge were compared. Also, the modal assurance criterion (MAC) was used. Good compatibility was recognized between the results obtained for experimental and numerical procedures in terms of both the natural frequency and the mode of vibration. At the end of this study, reasonable correlation is obtained between mode shapes, frequencies and damping ratios. Analytical and Operational modal frequencies differences between 0.139 %–7.170 %.

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3252
Author(s):  
Dora Foti ◽  
Nicola Ivan Giannoccaro ◽  
Vitantonio Vacca ◽  
Michela Lerna

In this paper, a non-destructive technique based on the monitoring of the environmental vibrations of two strategic buildings by positioning accelerometers in well-defined points was used for fixing their dynamic behavior. The accelerometers measurements were elaborated through Operational Modal Analysis (OMA) techniques, in order to identify natural frequencies, damping coefficients, and modal shapes of the structure. Once these parameters have been determined, a numerical model calibrated on the identified frequencies and verified on the corresponding mode shapes was created for each building. The structural operational efficiency index of the buildings was determined by using the Seismic Model Ambient Vibration (SMAV) methodology, which allows us to evaluate their seismic vulnerability. The results obtained from the experimental analysis (on three different tests for each analyzed building) concern the frequencies and the modal shapes of the structure. They have been compared to the results of the finite element model, with a very small error, indicating a good quality of the analysis and also the possibility of using directly well-tuned models for verifying the structural operating indices.


2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


Author(s):  
Bruna Nabuco ◽  
Sandro D. Amador ◽  
Evangelos I. Katsanos ◽  
Ulf T. Tygesen ◽  
Erik Damgaard Christensen ◽  
...  

Abstract Aiming to ensure the structural integrity of an offshore structure, wave-induced responses have been measured during normal operating conditions. Operational Modal Analysis is applied to the data obtained from continuously monitoring the structure. Sensors placed only on the topside of an offshore platform are sufficient to provide information to identify the modal properties of the structure, such as natural frequencies, damping ratios, and mode shapes. A finite element model is created and updated in line with the identified dynamic properties for applying a modal expansion technique in the interest of accessing information at any point of the structure. Wave radars are also placed at the platform from which the wave forces are calculated based on basic industrial standard models. In this way, the wave kinematics are estimated according to the linear wave theory associated with Wheeler stretching. Since this study is related to offshore structures composed by slender elements, the wave forces are estimated using Morison formulation. By assigning typical values to the drag and inertia coefficients, wave loads are estimated and applied to the updated finite element model. For the diffraction effect, the wave load has also been evaluated according to MacCamy and Fuchs theory. The responses obtained from this procedure are compared with measured responses. In addition to describing the process, this paper presents a case study to verify the theory using monitoring data from a tripod jacket. Results indicate realistic response estimation that contributes to the knowledge about the state of the structure.


As natural frequencies and mode shapes are often a key to understanding dynamic characteristics of structural elements, modal analysis provides a viable means to determine these properties. This paper investigates the dynamic characteristics of a healthy and unhealthy condition of a commercially used helical gear using the Frequency Domain Decomposition (FDD) identification algorithm in Operational Modal Analysis (OMA). For the unhealthy condition, a refined range of percentage of defects are introduced to the helical gear starting from one (1) tooth being defected (1/60 teeth) to six (6) teeth being defected (6/60 teeth). The specimen is tested under a free-free boundary condition for its simplicity and direct investigation purpose. Comparison of the results of these varying conditions of the structure will be shown to justify the validity of the method used. Acceptable modal data are obtained by considering and accentuating on the technical aspects in processing the experimental data which are critical aspects to be addressed. The natural frequencies and mode shapes are obtained through automatic and manual peak-picking process from Singular Value Decomposition (SVD) plot using Frequency Domain Decomposition (FDD) technique and the results are validated using the established Modal Assurance Criterion (MAC) indicator. The results indicate that OMA using FDD algorithm is a good method in identifying the dynamic characteristics and hence, is effective in detection of defects in this rotating element


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5816
Author(s):  
Maria Rashidi ◽  
Pejman Sharafi ◽  
Mohammad Alembagheri ◽  
Ali Bigdeli ◽  
Bijan Samali

The modal properties of modular structures, such as their natural frequencies, damping ratios and mode shapes, are different than those of conventional structures, mainly due to different structural systems being used for assembling prefabricated modular units onsite. To study the dynamic characteristics of modular systems and define a dynamic model, both the modal properties of the individual units and their connections need to be considered. This study is focused on the former aspect. A full-scale prefabricated volumetric steel module was experimentally tested using operational modal analysis technique under pure ambient vibrations and randomly generated artificial hammer impacts. It was tested in different situations: [a] bare (frame only) condition, and [b] infilled condition with different configurations of gypsum and cement-boards light-steel framed composite walls. The coupled module-wall system was instrumented with sensitive accelerometers, and its pure and free vibration responses were synchronously recorded through a data acquisition system. The main dynamic characteristics of the module were extracted using output-only algorithms, and the effects of the presence of infill wall panels and their material are discussed. Then, the module’s numerical micromodel for bare and infilled states is generated and calibrated against experimental results. Finally, an equivalent linear strut macro-model is proposed based on the calibrated data. The contribution of this study is assessing the effects of different infill wall materials on the dynamic characteristics of modular steel units, and proposing simple models for macro-analysis of infilled module assemblies.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Manuel Romero ◽  
Pablo Pachón ◽  
Víctor Compán ◽  
Margarita Cámara ◽  
Francisco Pinto

Today’s society is sensitive to the architectural heritage conservation. This implies to perform works to maintain these buildings and to assure their structural security. In the last years, the structural analysis of historical masonry constructions has experienced a great progress, thanks to the use of techniques based on the study of the dynamic properties of building structures. In this context, changes on the structural health state of a building are one of the elements that can be assessed considering changes on their dynamic properties. This is useful to evaluate the effectiveness of structural interventions on this kind of buildings by analysing these properties before and after it. This paper focuses on the Jura Chapel, in Jerez de la Frontera (Spain). This chapel is part of San Juan de los Caballeros Church and is dated from the 15th century. In 2015 and after the identification of some structural damages in the chapel vault, an intervention was initiated to improve its structural behaviour and to recover its original appearance. The present work reports the evaluation of the effects that this intervention has on the structural health state of the building, using nondestructive techniques based on ambient vibration tests (AVT) and Operational Modal Analysis (OMA). The AVT were performed for both prerestored and restored states and under environmental loads. A discussion about the validity of doing AVT from extrados when a vault presents disconnection between ribs and web is included in the paper. As a result, the first five natural frequency values have increased while the corresponding mode shapes have not changed significantly. This proves a structural health improvement caused by the repairing process without changing the original behaviour of the structure. This work shows OMA capabilities for evaluating the effectiveness of intervention works on the health state of a historical masonry structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
E. Ercan ◽  
A. Nuhoglu

This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed.


2013 ◽  
Vol 589-590 ◽  
pp. 19-22
Author(s):  
Lu Ning Liu ◽  
Zhen Yu Shi ◽  
Zhan Qiang Liu

In this paper, a face-milling tool system is dealt with the Finite Element Modal Analysis (FEMA) using advanced contact technology functionalities. Dynamic characteristics analysis is performed and the stiffness contribution is included in the modal pre-stressed analysis. Natural frequencies and mode shapes of vibration are calculated. The FEMA is followed by experiments performed for different operating conditions of the face-milling system. The dynamic characteristics obtained in this paper can be used to optimize the face-milling cutter in high speed machining.


2011 ◽  
Vol 314-316 ◽  
pp. 1533-1536 ◽  
Author(s):  
Shao Zhong Jiang ◽  
Wen Bing Yan

Based on the combination of modal analysis technology and finite element method (FEM), the 3D model of a diesel engine’s connecting rod was established with UG software, and then a free modal analysis of it was carried out with ANSYS. Through the analysis, the inherent frequencies and mode shapes of first 5 order modes were obtained respectively. The free modes of the connecting rod were verified by testing using hammer beat method.


Sign in / Sign up

Export Citation Format

Share Document