Study on Helical Groove and Circumferential Cutting Edge Machining Simulation of End Mill

2013 ◽  
Vol 589-590 ◽  
pp. 351-356
Author(s):  
Guo Chao Li ◽  
Jie Sun ◽  
Jian Feng Li ◽  
Qing Chun Xiong

A purely analytical method, based on the meshing theory, is presented to establish the exact helical groove and circumferential cutting edge model of end mills, for the solution of its low design precision and efficiency problems. Firstly, a coordinate system to represent the relative space position relations between grinding wheels and end mills is built and the mathematical model of the helical groove is precisely calculated with a given wheel profile and relative movements between the wheel and the workpiece. Then, the rake angle, inner radius and wheel positions of machining the clearance faces is computed. Finally, a 3D model of the end mill is generated by using OpenGL.

2013 ◽  
Vol 589-590 ◽  
pp. 416-420 ◽  
Author(s):  
Xian Feng Zhao ◽  
Lin He ◽  
Hong Yan Shi

This paper presents the mathematical model of helical groove of the end mill according to the differential geometry and meshing principle based on the grinding wheel attitude. The profile of the helical groove can be precisely calculated using a given wheel attitude and the relative motion between the workpiece and the grinding wheel.The relation between the grinding wheel attitude and the rake angle can be obtained through adjusting the grinding wheel attitude angle.And the accurate 3D model of helical groove was generated in the SolidWorks.The research shows that the grinding wheel attitude is the main factor that affects the rake angle of end mill.There is a linear relationship between the rake angle and the grinding wheel attitude. The smooth and accurate 3D model of helical groove lay the foundation for studying the cutting performance and dynamic characteristics of end mill.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 568 ◽  
Author(s):  
Zhiqiang Liang ◽  
Peng Gao ◽  
Xibin Wang ◽  
Shidi Li ◽  
Tianfeng Zhou ◽  
...  

Tool wear is a significant issue for the application of micro end mills. This can be significantly improved by coating materials on tool surfaces. This paper investigates the effects of different coating materials on tool wear in the micro milling of Ti-6Al-4V. A series of cutting experiments were conducted. The tool wear and workpiece surface morphology were investigated by analyzing the wear of the end flank surface and the total cutting edge. It was found that, without coating, serious tool wear and breakage occurred easily during milling. However, AlTiN-based and AlCrN-based coatings could highly reduce cutting edge chipping and flank wear. Specifically, The AlCrN-based coated mill presented less fracture resistance. For TiN coated micro end mill, only slight cutting edge chipping occurred. Compared with other types of tools, the AlTiN-based coated micro end mill could maximize tool life, bringing about an integrated cutting edges with the smallest surface roughness. In short, the AlTiN-based coating material is recommended for the micro end mill in the machining of Ti-6Al-4V.


2012 ◽  
Vol 516 ◽  
pp. 176-180
Author(s):  
Ryo Nishiyama ◽  
Keiichi Nakamoto ◽  
Tohru Ishida ◽  
Yoshimi Takeuchi

This study deals with 5-axis control tool path generation to create microshapes dexterously and efficiently, while maintaining quality. Concerning 5-axis control machining, the use of ball end mills is generally employed. However, this method needs a lot of time to obtain high quality surface. To solve this problem, a side cutting edge of the ball end mill is positively utilized with its parallel to the ruled surface. Therefore, a new CAM system is developed to detect the surface to be machined with the side cutting edge, and to generate collision-free tool paths between the tool and the work piece. The effectiveness of the developed CAM system is experimentally confirmed by creating a tiny Möbius ring.


2011 ◽  
Vol 121-126 ◽  
pp. 4753-4757
Author(s):  
Guo Chao Li ◽  
Jie Sun ◽  
Yong He

This paper describes a new approach to establish the helix flute model of solid carbide end mills. Based on the theory of differential geometry and coordinate transformation, a mathematical model of the end mill helix flute will be established.The main idea of the study is to envelop the helix flute by a one-parameter surface group which consists of the cross-sectional profiles of the wheel.Then, the mathematical model will be quickly verified by MATLAB.Thus the end mill design time will be saved and the new mathematical model will be checked effectively.


2011 ◽  
Vol 201-203 ◽  
pp. 841-845
Author(s):  
Zhan Hua You ◽  
Fei Tang ◽  
Shu Zhe Li ◽  
Xiao Feng Yue ◽  
Xiao Hao Wang

To facilitate the manufacturing of an end mill, this paper presents a manufacturing model of a flat-end mill using a five-axis computer numerical control (CNC) grinding machine. Using input data of end mill geometry, wheels geometry, wheel setting and machine setting, the NC code for machining will be generated directly from a solid modeling then used as input to simulate the end mill machining in 3 Dimension before machining. The 3D simulation system of the end mill grinding is generated by VBA and AutoCAD2008. Machining simulation consists of a sequence of Boolean operations on difference between the tool and the grinding wheels through NC code. Then the major design parameters of a cutter, such as relief angle and inner radius, can be verified by interrogating the section profile of its solid model. The manufacturing model presented in this paper provides a practical and efficient method for developing CAM software for the manufacture of an end mill.


1999 ◽  
Author(s):  
Serafettin Engin ◽  
Yusuf Altintas

Abstract Variety of helical end mill geometry is used in industry. Helical cylindrical, helical ball, taper helical ball, bull nosed and special purpose end mills are widely used in aerospace, automotive and die machining industry. While the geometry of each cutter may be different, the mechanics and dynamics of the milling process at each cutting edge point are common. This paper presents a generalized mathematical model of most helical end mills used in industry. The end mill geometry is modeled by helical flutes wrapped around a parametric envelope. The coordinates of a cutting edge point along the parametric helical flute are mathematically expressed. The chip thickness at each cutting point is evaluated by using the true kinematics of milling including the structural vibrations of both cutter and workpiece. By integrating the process along each cutting edge, which is in contact with the workpiece, the cutting forces, vibrations, dimensional surface finish and chatter stability lobes for an arbitrary end mill can be predicted. The predicted and measured cutting forces, surface roughness and stability lobes for ball, helical tapered ball, and bull nosed end mills are provided to illustrate the viability of the proposed generalized end mill analysis.


Author(s):  
Hans-Henrik Westermann ◽  
Benjamin Thorenz ◽  
Robert Müller ◽  
Rolf Steinhilper

Solid end mills with multi-section cutting edges and variable helix angles are available for application. New types of solid end mills for low energy consumption have recently been developed. These so-called Low Power Cutting (LPC)-Tools are characterized by differential helix angles. Compared to solid end mills with variable helix angles, the new differential helix angles change their pitch continuously over the cutting edge length. Due to this fact the cutting conditions are not in a constant state during the revolution of the cutting tool. Existing mathematical approaches for the calculation of cutting forces only consider constant helix angles in milling operations. This paper describes an approach for the prediction of cutting forces for differential helix angles. The developed mathematical model is based on geometrical considerations. Due to a continuously changing pitch over the cutting edge length a numerical approach for the mathematical model is chosen.


2010 ◽  
Vol 443 ◽  
pp. 232-237 ◽  
Author(s):  
Jong Leng Liow ◽  
Ulrich Frye

The surfaces of Al6061, machined by 150 μm two flute micro end-mills, were studied to determine their roughness. The surface roughness, Ra, was less than 100 nm but the Ra/Rz ratio ranged from 0.03–0.12. The surface roughness was found to improve with increasing width of cut and to a lesser extent with increasing feed rate. A single pass of the end-mill was found to produce a smoother surface than two passes over the same surface. The surface roughness was found to correspond to the diameter of the end mill and the slope of the secondary cutting edge. To reduce the surface roughness, smaller diameter end mills and chip loads should be used.


Author(s):  
Mahmoud M. Rababah ◽  
Zezhong C. Chen

In solid carbide end-mills, the flutes significantly affect the tool's cutting performance and life, and the core radius mainly affects the tool's rigidity. The current CNC programming techniques can correctly determine the orientation of the wheel so that it grinds the rake face with the specified rake angle; however, it cannot accurately determine the wheel location for the direct method and, consequently, the desired core radius is not guaranteed. To address this problem, a new CNC programming approach is proposed to accurately calculate the wheel orientation and location (WOL) in 5-axis grinding of the cylindrical end-mill flutes. In this work, a new concept of 5-axis CNC grinding—effective grinding edge (EGE)—is first proposed to represent the instantaneous grinding edge of the wheel, and the parametric equations of the effective grinding edge are formulated. The wheel orientation and location in 5-axis flute grinding are calculated automatically and accurately so that the rake angle of the rake face and the core radius are ensured. The new approach is verified with several examples in this work. Therefore, it can improve the end-mill quality and lays a good foundation for the computer-aided design/computer-aided engineering/computer-aided manufacturing (CAD/CAE/CAM) of end-mills.


Sign in / Sign up

Export Citation Format

Share Document