Computational Modeling and Optimization of a Magnetic Shielding Cabinet

2014 ◽  
Vol 605 ◽  
pp. 617-620
Author(s):  
N. Diakidis

Magnetic shielding is used to offer protection from stray magnetic fields to devices sensitive to magnetic noise. The Finite element method has been used in order to simulate the magnetic shielding effect of such a chamber in the geomagnetic field. Different designs for the cabinet have been considered and simulated in a static magnetic field of the same magnitude, as geomagnetic field, generated by a cylindrical coil. Several types of materials with different material properties have been simulated, such as high permeable mumetal and conductive aluminum, for the chamber itself, copper for the coil and air as the medium in which the magnetic field is propagating. The influence of geometrical and material properties parameters, like the thickness and the permeability of the ferromagnetic alloy, in the effectiveness of the shielding has been investigated using optimization techniques available in the design optimization module existing in the ANSYS v 14.0 ® finite element analysis software.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


2011 ◽  
Vol 24 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ivan Yatchev ◽  
Krastio Hinov ◽  
Iosko Balabozov ◽  
Kristina Krasteva

Several constructions of electromagnetic actuators with moving permanent magnet for Braille screen are studied. All they are formed from a basic one that consists of two coils, core and moving permanent magnet. The finite element method is used for modeling of the magnetic field and for obtaining the electromagnetic force acting on the mover. The static force-stroke characteristics are obtained for four different constructions of the actuator. The constructions with ferromagnetic disc between the coils ensure greater force than the ones without disc and can reach the required minimum force.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


2019 ◽  
Vol 86 (s1) ◽  
pp. 57-61 ◽  
Author(s):  
Sonia Bradai ◽  
Slim Naifar ◽  
Olfa Kanoun

AbstractHarvesting energy from ambient vibration sources is challenging due to its low characteristic amplitude and frequencies. In this purpose, this work presents a compact hybrid vibration converter based on electromagnetic and magnetoelectric principles working for a frequency bandwidth and under real vibration source properties. The combination of especially these two principles is mainly due to the fact that both converters can use the same changes of the magnetic field for energy harvesting. The converter was investigated using finite element analysis and validated experimentally. Results have shown that a frequency bandwidth up to 12 Hz with a characteristic resonant frequency at 24 Hz and a power density of 0.11mW/cm3 can be reached.


2014 ◽  
Vol 672-674 ◽  
pp. 562-566
Author(s):  
Ying Hong Luo ◽  
Jing Jing Wang

Superconducting Magnetic Energy Storage (SMES) system use conductive coils made of superconductor wire to store energy, its application entirely depends on the design and development of superconducting magnet, as the magnetic storage element, during the operation of the superconducting magnet generates relatively strong magnetic field. In this paper, a 1MJ class single solenoidal SMES with Bi2223/Ag conductor is presented. On the basis of electromagnetic theory, subsequently infers mathematical model of magnetic field distribution by ANSYS finite element analysis software, modeling a two-dimensional electromagnetic analysis of 44 double pancakes to get the magnetic field distribution patterns. The results of the analysis provide a reference for the structural design, optimization of a superconducting magnet and shielding of stray magnetic field.


1980 ◽  
Vol 47 (2) ◽  
pp. 377-382 ◽  
Author(s):  
K. Miya ◽  
T. Takagi ◽  
Y. Ando

Some corrections have been made hitherto to explain the great discrepancy between experimental and theoretical values of the magnetoelastic buckling field of a ferromagnetic beam plate. To solve this problem, the finite-element method was applied. A magnetic field and buckling equations of the ferromagnetic beam plate finite in size were solved numerically assuming that the magnetic torque is proportional to the rotation of the plate and by using a disturbed magnetic torque deduced by Moon. Numerical and experimental results agree well with each other within 25 percent.


2013 ◽  
Vol 479-480 ◽  
pp. 230-233
Author(s):  
Yi Chang Wu ◽  
Bo Syuan Jian

This paper presents finite-element analysis (FEA) of the magnetic field of a magnetic gear mechanism. An external type magnetic gear mechanism, which consists of two identical magnetic gears with sector-shaped permanent magnets, is introduced first. Then, the magnetostatic field distribution and transmitted torque of the magnetic gear mechanism are simulated by a commercial FEA package Ansoft/ Maxwell. Next, the effects of design parameters, including the air-gap length, the number of magnetic pole pairs, and the height of permanent magnets, on the maximum transmitted torque are discussed. The results of this work are beneficial to the design of magnetic gear mechanisms.


2014 ◽  
Vol 620 ◽  
pp. 127-132
Author(s):  
Xiao Wen Xi ◽  
Shang Kun Ren ◽  
Li Hua Yuan

Using large finite element analysis (FEA) software ANSYS, the stress-magnetization effect on 20# steel specimens with different shape notches is simulated under the geomagnetic field and tensile load. With the stimulation, the magnetic flux leakage fields at certain positions of the surface specimen were measured. Through analysis the relationship between the magnetic flux leakage fields of certain points with tensile stress, the results showed that the magnetic field value at certain positions of specimen surface first decreases and then increases along with the increase of stress, which is called magnetization reversal phenomenon; Different gaps and different positions of the specimen show different magnetization reversal rules; By measuring the maximal variation of the magnetic field value △Hmax at certain positions of the surface specimen and by analyzing its change law, we can roughly estimate specimen stress size and distribution regularity of stress. Moreover, this article also discusses the effect of lifts-off of the probe on the law of stress magnetization.


Sign in / Sign up

Export Citation Format

Share Document