scholarly journals Residual Stresses in Machining of AISI 52100 Steel under Dry and Cryogenic Conditions: A Brief Summary

2014 ◽  
Vol 611-612 ◽  
pp. 1236-1242 ◽  
Author(s):  
Serafino Caruso ◽  
J.C. Outeiro ◽  
Domenico Umbrello ◽  
António Castanhola Batista

Residual stress is one of the most important surface integrity parameter that can significantly affect the service performance of a mechanical component, such as: contact fatigue, corrosion resistance and part distortion. For this reason the mechanical state of both the machined surface and subsurface needs to be investigated. Residual stress induced by dry and cryogenic machining of hardened AISI 52100 steel was determined by using the X-ray diffraction technique. The objective was to evaluate the influence of the tool cutting edge geometry, workpiece hardness, cutting speed, microstructural changes and cooling conditions on the distribution of the residual stresses in the machined surface layers. The results are analysed in function of the thermal and mechanical phenomena generated during machining and their consequences on the white layer formation.

2012 ◽  
Vol 499 ◽  
pp. 217-222 ◽  
Author(s):  
C. Li ◽  
Yi Wan ◽  
R.R. Zhang ◽  
Zhan Qiang Liu

The residual stress in the milling of 7050-T7451 aluminum alloy was measured using X-ray diffraction method in which Psi-oscillation, Phi-oscillation and peak fit were adopted. Cutting speed and feed are main variables which were considered in this study. The results show that compressive residual stresses are generated in surface for the down milling generally, which is mainly due to burnishing effect between the tools flank face and the machined surface. In feed and its orthogonal direction, the effect of cutting speed and feed speed on residual stress is similar. Therefore, required residual stress can be achieved by controlling the cutting condition such as cutting speed, feed speed etc.


2012 ◽  
Vol 706-709 ◽  
pp. 1731-1736 ◽  
Author(s):  
Tobias Strauss ◽  
Harald Meier ◽  
Jens Gibmeier ◽  
Volker Schulze ◽  
Alexander Wanner

Broaching is an important technique for creating tooth structures in mechanical components. In the present work, the effects of the broaching process on the material state in the near surface region at the root of the tooth was analyzed. The studies were carried out on broached plates made from case hardening steel SAE 5120. The cutting speed and machining condition (cooling lubricant, dry machining) were varied. During broaching with a TiAlN coated tool the cutting forces were monitored. Subsequently, the local residual stresses at the root of the tooth were determined using X-ray diffraction. Further, surface roughness and micro hardness measurements as well as microstructure analysis complement the results. The results indicate that cutting forces have a high influence on the development of the residual stress state at the machined surface whereas no significant effect on changes in surface hardness and microstructure could be observed. Dry cutting with relatively high cutting speeds (≥ 30m/min) result in low cutting forces and hence in high tensile residual stresses in broaching direction.


Author(s):  
Yachao Wang ◽  
Chunhui Ji ◽  
Jing Shi ◽  
Zhanqiang Liu

Residual stresses in machined surfaces are often regarded as a determining factor of component service life. However, little work has been conducted to investigate the distribution of residual stresses in machined surfaces at nano-scale. In this paper, an MD simulation study is performed to study the residual stresses in machined surfaces of single crystal copper by diamond tools. We adopt a fixed cutting speed of 400m/s, vary depth of cut from 0.5nm to 1.5 nm, and change the tool rake angle from −30° to +30°. The results are then compared and discussed in the following aspects. First, it is found that both tool rake angle and depth of cut affect the morphologies of the formed chips, and as well as the cutting force evolution during machining process. Second, the normal residual stress in the tangential direction is more significant and has a clearer pattern than those in other directions for all the simulation cases. As such, the focus of the study is on this particular stress component. Third, with the increase of depth of cut, the maximum tensile residual stress decreases, and the residual stress becomes compressive at a shorter distance into the machined surface. Also, the use of negative rake angle makes the residual stress overall more tensile when closer to surface, and more compressive as the depth into surface further increases. It is actually consistent with traditional metal machining theory. The use of negative tool rake angle requires a larger thrust force, and this in turn overall makes the residual stress more compressive.


Author(s):  
A. W. Warren ◽  
Y. B. Guo

Surface integrity of machined components is critical for product performance in service. Process dynamic parameters, such as cutting speed and the changing contact condition between the tool flank face and machined surface, have a significant influence on surface integrity of a machined surface. Due to the very small scale of surface integrity factors on a machined surface, nanoindentation can be used to determine the surface/subsurface mechanical properties. However, the test data may be significantly influenced by machining induced residual stresses, strain hardening, and microstructure changes. The fundamental relationships between residual stress, microstructure, and nanohardness in the machined surface are yet to be understood. Further, it is not clear how to determine residual stress, at least its nature of tensile or compressive, from the nanoindentation data with the presence of complex residual stress state, strain hardening, and microstructure changes. This study focuses on the effects of cutting speed and machining system damping or rigidity (through varying tool flank wear) on subsurface mechanical state and the basic relationships between residual stress, white layer, and nanohardness. A series of nanoindentation tests were conducted to machined samples with distinct surface integrity by hard turning, grinding, and honing. It was found that white layer increases nanohardness and dark layer decreases nanohardness in subsurface, while strain hardening only slightly increases subsurface hardness. The research results indicate that subsurface residual stress can be qualitatively characterized by the load-displacement curve pattern and its parameters such as slope at initial loading, total depth, residual depth, and the ratio of residual depth to total depth. Residual stress would affect a load-displacement curve shape only at onset of yielding. Microstructure changes would make a significant difference on the characteristics of a load-displacement curve, while strain hardening exerts slight influence on the curve characteristics. In addition, the mechanism of residual stress on indentation depth was explained using a Mohr’s circle.


2021 ◽  
Vol 347 ◽  
pp. 00037
Author(s):  
Gary Styger ◽  
Rudolph F Laubscher

The surface integrity of a turned machined surface is an essential indicator of the fatigue and corrosion performance of a component. A critical descriptor of this property is the residual stress, both on the surface and subsurface of a part. However, experimental determination of vital surface integrity parameters such as surface roughness, hardness, affected microstructure, and residual stresses is costly, time consuming, and involves the destruction of the part. Therefore, prediction of these parameters, such as residual stress versus depth, would be of great value and could aid in the correct machining parameters (cutting speed, feed rate, edge tool radius, rake angle, coolant) for the desired part performance. A study was initiated to determine the influence of a worn tool and multiple cuts on a wide range of cutting speeds on residual stresses induced by machining an outside-turned bar of Ti6Al4V titanium alloy. Thus, a project was initiated to develop a non-linear finite element model to predict the residual stresses thus developed due to the machining manufacturing process.


1999 ◽  
Author(s):  
Anand Ramesh ◽  
Jeffrey D. Thiele ◽  
Shreyes N. Melkote

Abstract This paper presents the results of an experimental study intended to compare the surface integrity of finish hard turned AISI 4340 and 52100 steels (57 Rc). Specifically, the paper addresses residual stresses, white layer formation and workpiece sub-surface plastic flow in hard turning of AISI 4340 by varying the feed rate and the tool cutting edge geometry. The results are compared with those obtained for AISI 52100 steel under identical conditions in a previous study (Thiele and Melkote, 1999a-b). In contrast to AISI 52100, no white layers were produced in AISI 4340 when cutting at low feed rates with a chamfered tool. Also, unlike AISI 52100, no clear evidence of an over-tempered layer was found in AISI 4340 steel under all conditions studied. Surface residual stresses in AISI 4340 steel were more compressive than AISI 52100 steel, whereas the magnitude and depth of the peak compressive residual stress tended to be greater for AISI 52100 steel. These observations are attributed to the different mechanical, thermal, and metallurgical responses of the two hardened steel alloys to machining, and are in part due to the significant difference in the carbon content of the two alloys.


2006 ◽  
Vol 524-525 ◽  
pp. 179-184 ◽  
Author(s):  
J.C. Outeiro ◽  
Domenico Umbrello ◽  
Rachid M'Saoubi

The reliability of a mechanical component depends to a large extent on the physical state of its surface layers. This state includes the distribution of residual stresses induced by machining. Residual stresses in the machined surface and subsurface are affected by the cutting tool, work material, contact conditions on the interfaces, cutting regime parameters (cutting speed, feed and depth of cut), but also depends on the cutting procedure. In this paper, the effects of cutting sequence on the residual stress distribution in the machined surface of AISI 316L steel are experimentally and numerically investigated. In the former case, the X-ray diffraction technique is applied, while in the latter an elastic-viscoplastic FEM formulation is implemented. The results show that sequential cut tends to increase superficial residual stresses. A greater variation in residual stresses is observed between the first and the second cut. Moreover, an increase in the thickness of the tensile layer is also observed with the number of cuts, this difference also being greater between the first and the second cut. Based on these results, the residual stress distribution on the affected machined layers can be controlled by optimizing the cutting sequence.


2012 ◽  
Vol 271-272 ◽  
pp. 242-246 ◽  
Author(s):  
Rui Tao Peng ◽  
Fang Lu ◽  
Xin Zi Tang ◽  
Yuan Qiang Tan

Aiming to get appropriate residual compressive stress distribution on machined surface just in the machining process, the technique of prestressed cutting is applied for nickel-based superalloy shafts. This article studies theoretically and experimentally the effect of prestress on the residual stress in the machined surface layer. Prestressed turning tests under the conditions of different prestress, cutting speed, depth of cut and feed rate were carried out, residual stresses were determined via an X-ray diffraction technique. Theoretical result demonstrates that higher prestress leads to more prominent residual compressive stress and validated by experiments, meanwhile measured residual stress profiles indicate that lower cutting speed and lower feed rate lead to more remarkable compressive stress state, contrarily depth of cut shows relatively indistinctive effect.


2006 ◽  
Vol 524-525 ◽  
pp. 381-386 ◽  
Author(s):  
Toshihiko Sasaki ◽  
Shunichi Takahashi ◽  
Kengo Iwfuchi ◽  
Yukio Satoh ◽  
Yoshikazu Kanematsu ◽  
...  

In this study, a new portable X-ray stress analyzer was designed and manufactured. The purpose of its use is to evaluate the rolling contact fatigue damage in rails for establishing an effective rail maintenance method. An image plate was used in this analyzer for detecting diffracted X-ray beams. The cosα method was adopted for X-ray stress analysis from X-ray diffraction data. A fundamental experiment was made first for examning the present measurement system. Residual stresses in rails used in service for six years were also investigated in this study.


2007 ◽  
Vol 10-12 ◽  
pp. 688-691 ◽  
Author(s):  
Zhong Qiu Wang ◽  
J. Sun ◽  
Jian Feng Li ◽  
I. Al-Zkeri

Residual stress on the machined surface and the subsurface is one of the most important factors that can influence the service quality of a component, such as fatigue life, tribological properties, and distortion. In this work, a 2D FEM model of AISI 52100 hard turning processes is setup. The material properties are widely selected to describe the material property more precisely. By using user subroutine named Konti-Cut, the steady state of cutting process is simulated and the cutting forces and residual stresses in this time are investigated. By comparing the cutting forces, the FEM model can gives quite good appliance with experimental data. And the basic relations between residual stresses and cutting parameter, tool geometry are drawn.


Sign in / Sign up

Export Citation Format

Share Document