Synthesis and Photo-Catalytic Performance of ZnO/Graphene Composites

2014 ◽  
Vol 633 ◽  
pp. 103-106 ◽  
Author(s):  
Cai Xia Li ◽  
Xiao Dong Zhang ◽  
Dan Yu Jiang ◽  
Qiang Li

Zinc acetate dehydrate and Graphene oxide (GO) were employed as raw materials, the ZnO/Graphene composites were simply and quickly synthesized by solvothermal reaction at 180°C for 12 h. The phase structure and morphologies of the as-obtained composites were characterized and observed by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Using RhB solution simulated dye wastewater, the composites’ photo-catalytic performance were preliminary tested and observed with the visible light irradiation. The results indicated that the concentrations of zinc acetate and the mass ratio of zinc acetate dihydratio and graphene oxide all had an impact on the photo-degradation rate. The photo-degradation rate of the composites prepared with the concentrations of zinc acetate of 0.01 mol/L was higher than that of zinc acetate of 0.001 mol/L. The mass ratio of zinc acetate dehydratio and graphene oxide of 4:1 was higher than that of 8:1.

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


2013 ◽  
Vol 544 ◽  
pp. 21-24
Author(s):  
Cai Xia Li ◽  
Lin Zhang ◽  
Dan Yu Jiang ◽  
Qiang Li

Selecting graphene oxide (GO) and the Degussa P25 TiO2 (80% anatase and 20% rutile) as raw materials, the composites of graphene/TiO2 nano-tubes were simply and quickly prepared under the conditions of a concentrated solution of sodium hydroxide. The as-obtained composites’ phase structure was analyzed and characterized by powder X-ray diffraction (XRD), their morphologies were also observed and cross-confirmed under the Transmission Electron Microscopy (TEM). The measurements showed that the composites prepared in this work have a remarkable structure, and compared to the seperate TiO2 nano-tubes, the agglomeration of TiO2 nano-tubes covered on the surface of the graphene is apparently not so serious. In view of this, we preliminary tested the composites’ photo-catalytic performance with the visible light irradiation, and also made a comparison with TiO2 nano-tubes.


2020 ◽  
Vol 38 (7-8) ◽  
pp. 240-253
Author(s):  
Lu Thi Mong Thy ◽  
Nguyen Hoai Thuong ◽  
Tran Hoang Tu ◽  
Nguyen Huong Tra My ◽  
Huynh Huy Phuong Tuong ◽  
...  

In this work, magnetic graphene oxide nanocomposites were synthesized by co-precipitation method and used as an adsorbent for removal of arsenic (V) ions from water. The structure and morphology of magnetic graphene oxide nanocomposites were studied by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area, and vibrating sample magnetometry. Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy results of magnetic graphene oxide presented that the Fe3O4 nanoparticles in the size range of 10–25 nm were decorated on graphene oxide nanosheets. The adsorption properties of magnetic graphene oxide nanocomposites for arsenic (V) from water were investigated to study the effects of magnetic graphene oxide mass ratio, contact time, pH, and initial concentration. The suitable magnetic graphene oxide mass ratio of nanocomposites for arsenic (V) adsorption was determined to be 4:1 (FG2). The adsorption process on FG2 followed a pseudo-second-order kinetic and well fitted in to Langmuir isotherm model with the maximum adsorption capacity of 69.44 mg/g at pH 3. Accordingly, FG2 could be used as an effective adsorbent for removal of arsenic (V) from water.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2010 ◽  
Vol 123-125 ◽  
pp. 1291-1294 ◽  
Author(s):  
Bin Lü ◽  
Jian Zhong Ma ◽  
Dang Ge Gao ◽  
Lei Hong

Modified rapeseed oil(MRO) was prepared by using rapeseed oil, ethylene diamine and acrylic acid as the raw materials. Modified rapeseed oil/montmorillonite(MRO/MMT) nanocomposite was prepared by using modified rapeseed oil and montmorillonite. The emulsifying properties of MRO and MRO/MMT were determined respectively. Fourier transforms infrared spectrometry (FT-IR) and Transmission Electron microscope (TEM) results showed that MRO/MMT was prepared successfully. X-ray diffraction (XRD) results showed that modified rapeseed oil could smoothly enter the interlayer of montmorillonite, and modified the montmorillonite; with an increase in the amount of montmorillonite, the layer spacing of montmorillonite in the MRO/MMT lower after the first increase. The results of emulsifying properties indicated that emulsifying properties of MRO/MMT was better than MRO.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1238
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Damian C. Onwudiwe

In this paper, spherical-shaped pure phase djurleite (Cu31S16) and roxbyite (Cu7S4) nanoparticles were prepared by a solvothermal decomposition of copper(II) dithiocarbamate complex in dodecanthiol (DDT). The reaction temperature was used to control the phases of the samples, which were represented as Cu31S16 (120 °C), Cu31S16 (150 °C), Cu7S4 (220 °C), and Cu7S4 (250 °C) and were characterized by using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and absorption spectroscopy. The samples were used as photocatalysts for the degradation of tetracycline (TC) under visible light irradiation. The results of the study showed that Cu7S4 (250 °C) exhibited the best activity in the reaction system with the TC degradation rate of up to 99% within 120 min of light exposure, while the Cu31S16 (120 °C) system was only 46.5% at the same reaction condition. In general, roxbyite Cu7S4 (250 °C) could be considered as a potential catalyst for the degradation of TC in solution.


Author(s):  
Syed Shahabuddin ◽  
Norazilawati Muhamad Sarih ◽  
Muhammad Afzal Kamboh ◽  
Hamid Rashidi Nodeh ◽  
Sharifah Mohamad

The present investigation highlights the synthesis of polyaniline (PANI) coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in-situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB) and the anionic dye methyl orange (MO). The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adsorption efficiencies of graphene oxide (GO), PANI homopolymer and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt% SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO respectively, in a very short duration of time.


2011 ◽  
Vol 47 (1) ◽  
pp. 73-78 ◽  
Author(s):  
E. Darezereshki ◽  
F. Bakhtiari

In this study CuO nanoparticles were prepared via direct thermal decomposition method using basic copper sulphates as wet chemically synthesized precursor which was calcined in air at 750?C for 2h. Samples were characterized by thermogravimetric (TG-DSC), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), infrared spectrum (IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD, EDS, and IR results indicated that the synthesized CuO particles were pure. The SEM and TEM results showed that the CuO nanoparticles were of approximate spherical shape, and 170?5 nm in size. Using this method, Cuo nanoparticles could be produced without using organic solvent, expensive raw materials, and complicated equipment.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 215 ◽  
Author(s):  
Penghe Su ◽  
Ya Chen ◽  
Xiaotong Liu ◽  
Hongyuan Chuai ◽  
Hongchi Liu ◽  
...  

A simple and practical Rh-catalyzed hydroformylation of vinyl acetate has been synthesized via impregnation-calcination method using silicate nanotubes (MgSNTs) as the supporter. The Rh0 (zero valent state of rhodium) was obtained by calcination. The influence of calcination temperature on catalytic performance of the catalysts was investigated in detail. The catalysts were characterized in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS), atomic emission spectrometer (ICP), and Brunauer–Emmett–Teller (BET) surface-area analyzers. The Rh/MgSNTs(a2) catalyst shows excellent catalytic activity, selectivity and superior cyclicity. The catalyst could be easily recovered by phase separation and was used up to four times.


Sign in / Sign up

Export Citation Format

Share Document