Numerical Study on the Comparison of Deformation Characteristics during the Fine Blanking Process of Spur Gears and Helical Gear

2015 ◽  
Vol 639 ◽  
pp. 559-566 ◽  
Author(s):  
Wen Ting Xia ◽  
Hua Jie Mao ◽  
Lin Hua ◽  
Yan Xiong Liu

As important transmission components, helical gears have been widely applied to mechanical and automotive fields. The traditional manufacturing process for helical gears is machining, which is time-consuming and result in the high cost of gears. In order to improve the production efficiency and product quality of helical gears, a novel forming process principle for the fine blanking of helical gears was developed. In this study, reliable three-dimensional (3D) rigid-plastic finite element (FE) models of single tooth and complete gears were set up and investigated using the software Deform-3D, the deformation characteristics of fine blanking of spur gears and helical gears were compared. Based on the valid numerical models, variation tendency of different field variables such as damage material flow velocity, and mean stress were obtained, as well as the feature of the tooth section, which provides a better understanding of the deformation mechanism of rotational fine blanking process.

2012 ◽  
Vol 190-191 ◽  
pp. 121-125 ◽  
Author(s):  
Shan Yang ◽  
Lin Hua ◽  
Yan Li Song

Fine blanking, as an effective and economy metal forming process, can be used for the manufacturing of helical gears with inclined forming movement. In the present study, a reliable three-dimensional (3D) rigid-plastic finite element (FE) model is developed on the DEFORM-3D platform for rotational fine blanking of a helical gear. Based on this FE model, distributions of different field variables such as metal flow velocity, mean stress and effective strain are obtained, and cut surface features and punch stroke curve are predicted. The results achieved in this study can not only evaluate the capabilities of the rotational fine blanking process of a helical gear, but also provide valuable guidelines and a better understanding of the deformation mechanism of this process.


2021 ◽  
Author(s):  
Huajie Mao ◽  
Han Chen ◽  
Yanxiong Liu ◽  
Kaisheng Ji

Abstract Fine blanking is a kind of metal forming process with the advantages of high precision, good surface quality and low cost. Influenced by the concept of lightweight, a large number of metal materials with high strength are widely used in various fields. High strength materials are prone to be cracked during plastic deformation due to their poor plasticity, which limits the application range of them. This paper proposed a force variation fine blanking process for high-strength and low-plasticity materials. At the same time, a method to find the curve of forming force for this novel process was presented. A 2D finite element fine blanking model was established for the TC4 material. Combining genetic algorithm and neural network methods, a model was built up to find the optimal forming force loading curve. The parts fabricated by force variation loading and constant loading fine blanking process were compared through experiments. The mechanism of force variation fine blanking is also revealed. The forming force mainly affects the length of clean cutting surface by affecting hydrostatic stress. According to the ultimate optimal loading curve, the forming force should be kept at a low level in the early stage of blanking stroke, and increased gradually in the ending stage. In the application of force variation fine blanking, the part with long length of clean cutting surface can be obtained with lower die load.


2011 ◽  
Vol 396-398 ◽  
pp. 134-139
Author(s):  
An Long ◽  
Rui Ge ◽  
Yi Sheng Zhang ◽  
Li Bo Pan

To conclude the mechanics of fine blanking, the numerical simulation model of a cam’s fine blanking process was established, the forming process was simulated by DEFORM-3D software, the deform principle was summarized. Then the effect of three key processing parameters such as gap between punch and die, pressure-pad-force/counter force, serrated ring postion to fine blanking quality were researched, optimized parameters in fine blanking were gained.


2011 ◽  
Vol 462-463 ◽  
pp. 1032-1037 ◽  
Author(s):  
Abdurahman Ablimit ◽  
Mamtimin Gheni ◽  
Zhong Hua Xu ◽  
Mamatjan Tursun ◽  
Xamxinur Abdikerem

In this paper, the sand break into highway problem in desert, which is caused by the sand flow blown by wind, is studied. The mathematical models are introduced by considering the fixed, semi-fixed and free sand desert fields based on the fluid dynamics and the sand particle dynamics. Different kinds of numerical models are made by changing the desert highway height, wind flow direction and its uniformity. The weak coupling method is used due to spatial relationships between air flow field and the sand flow field. Finally, by coupling the airflow field and sand flow field with desert highway, the numerical simulations of sand forming process on desert highway are conducted. The numerical results shown, that the wind blown sand breaks into highway easier when wind direction perpendicular highway and if the highway height higher than the range size of the sand surface the wind blown sand break into highway is more difficult.


2020 ◽  
Author(s):  
Yan xiong Liu ◽  
Yuwen Shu ◽  
Wen tao Hu ◽  
Xin hao Zhao ◽  
Zhi cheng Xu

Abstract The fine-blanking process as an advanced sheet metal forming process has been widely applied in the industrial area. However, special designed equipment is required for this process. In this paper, a novel mechanical servo high speed fine-blanking press with the capacity of 3200kN is proposed, and the vibration control for this machine is researched to achieve the requirement of fine-blanked parts of high dimensional accuracy, since the vibration of the fine-blanking machine will cause the machining displacement error and reduce the machining accuracy. The self-adaptive feed forward control is used to simulate the active vibration control of the mechanical fine-blanking machine. The vibration control principle of the fine-blanking machine is described and the control algorithm is established. At the same time, the vibration mechanical model of the fine-blanking machine as the controlled object is established, and the parameters of the excitation input and the mechanical model are obtained by the fine-blanking finite element simulation and the experiments of the vibration measurement of the press. Finally, the numerical simulation and analysis of active vibration control based on Matlab are carried out. The results show that the control effect is good, and the vibration response is effectively reduced.


2021 ◽  
Vol 67 (9) ◽  
pp. 445-457
Author(s):  
Yanxiong Liu ◽  
Yuwen Shu ◽  
Wentao Hu ◽  
Xinhao Zhao ◽  
Zhicheng Xu

The fine-blanking process as an advanced sheet metal forming process has been widely applied in industry. However, specially designed equipment is required for this process. In this paper, a novel mechanical servo high-speed fine-blanking press with the capacity of 3200 kN is proposed, and the vibration control for this machine is researched to achieve the requirement of fine-blanked parts of high dimensional accuracy, since the vibration of the fine-blanking machine will cause the machining displacement error and reduce the machining accuracy. Self-adaptive feed-forward control is used to simulate the active vibration control of the mechanical fine-blanking machine. The vibration control principle of the fine-blanking machine is described, and the control algorithm is established. At the same time, the mechanical vibration model of the fine-blanking machine as the controlled object is established, and the parameters of the excitation input and the mechanical model are obtained by the fine-blanking finite element simulation and the experiments of the vibration measurement of the press. Finally, the numerical simulation and analysis of active vibration control based on MATLAB are carried out. The results show that the control effect is good, and the vibration response is effectively reduced, thus greatly increasing the processing accuracy, saving a significant amount of energy, and reducing the energy consumption and defective rate.


2009 ◽  
Vol 83-86 ◽  
pp. 1099-1106 ◽  
Author(s):  
Sutasn Thipprakmas ◽  
C. Chanchay ◽  
N. Hanwach ◽  
W. Wongjan ◽  
K. Vichitjarusgul

In cold working metal forming process, severe plastic deformation results in changes in the material properties. Earlier researches mainly investigated the rolling and equal channel angular extrusion (ECAE) processes. This study focuses on the fine-blanking process, specially the increasing material hardness on the fineblanked sprocket part. The microstructure around the cut surface is observed and the finite element analysis is done to clarify the mechanism of the increasing hardness as well. The microstructure revealed increasingly compressed and elongated grain structure of the contributed grain flow and orientation, as the blankholder and counterpunch forces increased. This resulted in the increased material hardness around the cut surface. Thus, these results theoretically clarified the mechanism of the increasing material hardness in the fine-blanking process regarding microstructural evolution, with the associated finite element analysis. Therefore, the special characteristic features in the fine-blanking process, result in the pronounced hardening around the fineblanked surface.


2021 ◽  
Vol 883 ◽  
pp. 269-276
Author(s):  
Ingo Felix Weiser ◽  
Andreas Feuerhack ◽  
Thomas Bergs

Fine blanking is a production technology of high importance especially for the automotive industry. As a procedure of sheet metal separation, it is possible to produce complex parts in a single stroke. As a difference to conventional punching, the cutting surface of fine blanked parts can often be used as a functional surface without further process steps. However, fine blanking as a forming process changes the microstructure of the metal sheet to a higher extend than cutting or machining processes. Due to this, it is of utmost importance to investigate the cause-effect-relations between the fine blanking process parameters and the resulting properties of the fine blanked part. Especially the condition of the cut surface as an important quality criterion has to be investigated. The quality characteristics of the cut surface of fine blanked parts are often subject of investigations. In addition, it would be of importance to investigate how the material properties in the shear zone are changed by the fine blanking process. This on one hand in turn can enable conclusions to be drawn about possible punch wear. If, on the other hand, hardening of the cut surface takes place as a result of fine blanking, then this could have a positive influence on the application properties of fine blanked components. Thus, an experimental fine blanking investigation of the micro hardness of the cutting surface has been made with variation of steel material and cutting temperature. It could be demonstrated that the micro hardness increases in direction towards the burr. This is independent on material and cutting temperature.


2004 ◽  
Vol 261-263 ◽  
pp. 603-608 ◽  
Author(s):  
Gang Fang ◽  
P. Zeng

Fine blanking process with V-ring was simulated with FEM. The geometric parameters of the die, the punch, the serrated ring and the sheet are modeled. In this paper, some other assumptions are made for the analysis. The workpiece is considered as elastic-plastic material, while the tools are defined as rigid bodies. The damage model taking into account the influence of hydrostatic stress is used to simulate material fracture in blanking. The stress status and forming process are analyzed. Authors also investigated the effect of distance from tooth to die edge on roll-over high. The simulation can reflect the laws of fine blanking process.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (8) ◽  
Author(s):  
JANI LEHMONEN ◽  
TIMO RANTANEN ◽  
KARITA KINNUNEN-RAUDASKOSKI

The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensated for successfully through wet pressing.


Sign in / Sign up

Export Citation Format

Share Document