scholarly journals A Novel Force Variation Fine Blanking Process for the High-strength and Low-plasticity Material

Author(s):  
Huajie Mao ◽  
Han Chen ◽  
Yanxiong Liu ◽  
Kaisheng Ji

Abstract Fine blanking is a kind of metal forming process with the advantages of high precision, good surface quality and low cost. Influenced by the concept of lightweight, a large number of metal materials with high strength are widely used in various fields. High strength materials are prone to be cracked during plastic deformation due to their poor plasticity, which limits the application range of them. This paper proposed a force variation fine blanking process for high-strength and low-plasticity materials. At the same time, a method to find the curve of forming force for this novel process was presented. A 2D finite element fine blanking model was established for the TC4 material. Combining genetic algorithm and neural network methods, a model was built up to find the optimal forming force loading curve. The parts fabricated by force variation loading and constant loading fine blanking process were compared through experiments. The mechanism of force variation fine blanking is also revealed. The forming force mainly affects the length of clean cutting surface by affecting hydrostatic stress. According to the ultimate optimal loading curve, the forming force should be kept at a low level in the early stage of blanking stroke, and increased gradually in the ending stage. In the application of force variation fine blanking, the part with long length of clean cutting surface can be obtained with lower die load.

2021 ◽  
Vol 883 ◽  
pp. 269-276
Author(s):  
Ingo Felix Weiser ◽  
Andreas Feuerhack ◽  
Thomas Bergs

Fine blanking is a production technology of high importance especially for the automotive industry. As a procedure of sheet metal separation, it is possible to produce complex parts in a single stroke. As a difference to conventional punching, the cutting surface of fine blanked parts can often be used as a functional surface without further process steps. However, fine blanking as a forming process changes the microstructure of the metal sheet to a higher extend than cutting or machining processes. Due to this, it is of utmost importance to investigate the cause-effect-relations between the fine blanking process parameters and the resulting properties of the fine blanked part. Especially the condition of the cut surface as an important quality criterion has to be investigated. The quality characteristics of the cut surface of fine blanked parts are often subject of investigations. In addition, it would be of importance to investigate how the material properties in the shear zone are changed by the fine blanking process. This on one hand in turn can enable conclusions to be drawn about possible punch wear. If, on the other hand, hardening of the cut surface takes place as a result of fine blanking, then this could have a positive influence on the application properties of fine blanked components. Thus, an experimental fine blanking investigation of the micro hardness of the cutting surface has been made with variation of steel material and cutting temperature. It could be demonstrated that the micro hardness increases in direction towards the burr. This is independent on material and cutting temperature.


2004 ◽  
Vol 261-263 ◽  
pp. 603-608 ◽  
Author(s):  
Gang Fang ◽  
P. Zeng

Fine blanking process with V-ring was simulated with FEM. The geometric parameters of the die, the punch, the serrated ring and the sheet are modeled. In this paper, some other assumptions are made for the analysis. The workpiece is considered as elastic-plastic material, while the tools are defined as rigid bodies. The damage model taking into account the influence of hydrostatic stress is used to simulate material fracture in blanking. The stress status and forming process are analyzed. Authors also investigated the effect of distance from tooth to die edge on roll-over high. The simulation can reflect the laws of fine blanking process.


2014 ◽  
Vol 607 ◽  
pp. 612-615
Author(s):  
Jong Deok Kim ◽  
Hyun Jun Ko

Fine blanking is a press-working process that permits the production of precise, finished components which are cleanly sheared through the whole cutting surface. The manufacturing cost can be reduced because the secondary operations such as milling and broaching can be eliminated and the multistage combined stamping process can be added. The product cost can increase, however, while the precise fine blanking tool and high cost fine blanking press are required. Therefore it is important to design the fine blanking tool in view of the life expectancy of the punch. In this paper the fatigue simulation of fine blanking tool punch for automobile start motor flange was conducted using the commercial FEA software ANSYS. Initially, the material properties were tested and the fine blanking tool was designed for production experiments. The modelling of tool elements and the fatigue simulation according to repeated loads were conducted. As a result of fatigue simulation, the fine blanking tool punch for start motor flange had been fractured with 3,981 strokes. In the fine blanking production experiments, the fine blanking tool punch had to be regrinded after it was used with 3,425 strokes. It was also found that the fatigue simulation of fine blanking tool punch was conducted with an error of 14%.


2013 ◽  
Vol 392 ◽  
pp. 31-35 ◽  
Author(s):  
Jong Deok Kim ◽  
Young Moo Heo ◽  
Si Tae Won

Fine blanking is a press-working process that permits the production of precise finished components which are cleanly sheared through the whole cutting surface. It can be eliminated secondary operations, such as milling, grinding, etc. Recently, many studies on the weight reduction of automobile for fuel saving were underway. Especially, there are many examples in which light metal like Al were applied for automotive parts. Eco-Al is the new material which is replaced Mg of aluminum alloy with Mg+Al2Ca, therefore Eco-Al material has improved mechanical properties and formability. The clearance between the punch and die of a fine blanking tool is an important design factor that affects the sheared surface of a product. In a fine blanking process, the clearance is typically assigned a 0.5% material thickness. If the clearance is too big, a fractured surface would occur in the product while if it is too small, bulging would occur. In this study, a setting for optimum clearance was proposed for inner corner shapes by checking shear characteristics and bulging effects according to various clearances. After designing a special part with various corner shapes possessing Eco-Al5052 (thickness: 4 mm), a fine blanking tool was constructed and fine blanking experiments were conducted. The result could be usefully applied in fine blanking processes for Eco-Al automobile parts with corner shapes in the future.


2011 ◽  
Vol 396-398 ◽  
pp. 134-139
Author(s):  
An Long ◽  
Rui Ge ◽  
Yi Sheng Zhang ◽  
Li Bo Pan

To conclude the mechanics of fine blanking, the numerical simulation model of a cam’s fine blanking process was established, the forming process was simulated by DEFORM-3D software, the deform principle was summarized. Then the effect of three key processing parameters such as gap between punch and die, pressure-pad-force/counter force, serrated ring postion to fine blanking quality were researched, optimized parameters in fine blanking were gained.


2009 ◽  
Vol 16-19 ◽  
pp. 495-499 ◽  
Author(s):  
Si Ji Qin ◽  
Li Yang ◽  
Jia Geng Peng

The fine blanking process with a stepped-edge punch was researched by finite element method (FEM) and experiment investigation. Finite element analysis showed that the hydrostatic stress of the blank around the edges changes a little during fine blanking process using a stepped-edge punch with negative clearance. The burnish zone of sheared surface increases with the increase of the relative negative clearance. The reasonable forming parameters were presented by a lot of experiment investigations. Parts of three kinds of materials, Q235 steel, copper and industrial aluminum, were formed using fine blanking process with a stepped-edge punch. Full burnish zone were obsearved for all the parts.


2011 ◽  
Vol 291-294 ◽  
pp. 440-443 ◽  
Author(s):  
Chun Dong Zhu ◽  
Fu Tao Li ◽  
Zhi Qiang Gu

Due to the limitation of 2D simulation in fine blanking, finite element software DEFORM-3D was used to simulate the 3D model of Back Plate. In this article the Normalized Cockroft&Latham fracture criterion was chosen to simulate the blanking process. The distribution and developing trend of the hydrostatic stress, equivalent stress in the fine blanking process are predicted. When the die radii are between 0.4mm and 0.6mm, burnished surface improves. It shows that the ideal blanking clearance value is 0.6% of the material thickness. The results indicate that FE numerical simulation could effectively optimize fine blanking process and offer basis for quality improvement.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 678 ◽  
Author(s):  
Yohei Suzuki ◽  
Ming Yang ◽  
Masao Murakawa

An extrusion-type fine blanking with a negative clearance was proposed by the authors instead of standard fine blanking for creating a full-sheared surface in the micro blanking process. In this study, micro blanking experiments and finite element analyses with narrow, zero and negative clearances are carried out for the optimizing the clearance at which a shear cut surface can be finished with a full-sheared surface with the minimized punch load. Fracture criterion, hydrostatic stress and maximum punch stress for the conditions with various clearances are investigated. As a result, it was clarified that the clearance at which the cut surface does not fracture and minimization of the punch load is achieved is gained by the use of clearance −4 μm.


2011 ◽  
Vol 110-116 ◽  
pp. 2723-2729 ◽  
Author(s):  
Vahid Daiezadeh ◽  
Majid Elyasi ◽  
Meghdad Mollaei

Large deformation is a major deformation operation in many metal-forming processes, such as forging, rolling, extrusion, stamping and fine-blanking. It is difficult to study the deformation changes in these processes in a practical way, through the measurement of forces, due to the severe and localized nature of plastic deformation such as in the fine-blanking operation. Therefore, the forces analysis of most metal-forming processes cannot be carried out successfully by experiments. Thus, this paper aims to present the development of an effective process of forces measurement in fine-blanking process. Also, the effect of blank geometry and material properties on forming force in fine-blanking process was studied by theoretical formulation and experimental approach. Tensile strength and initial blank thickness were considered in this research. The obtained results indicated that by increasing the initial blank thickness and the tensile strength, the forces in fine-blanking process is increased.


2021 ◽  
Author(s):  
Ingo Felix Weiser ◽  
Robby Mannens ◽  
Andreas Feuerhack ◽  
Thomas Bergs

Fine blanking is a highly productive process of industrial mass production with which high quality components in particular but not exclusively for the automotive industry are produced. The manufacturing process faces its limits at elevated tensile strengths of the materials to be processed. Consequently, high-strength steels can currently only be fine blanked to a limited extent. This can be overcome by lowering the flow stress of high-strength steels by means of inductive heating. A steel of high importance especially for industries with high hygiene standards such as medical and nutrition production is the stainless steel X5CrNi18-10 (1.4301). As a metastable austenitic steel which can initiate cutting impact on the press through martensitization, fine blanking of stainless steel is a challenge. X5CrNi18-10 is not a high-strength steel per se but becomes difficult to process due to the high hardness of the martensite phase, known as transformation-induced plasticity (TRIP) effect. Thus, in order to combine the possible advantages of the fine blanking process with inductive heating and the important properties of stainless steel, fine blanking of this steel was investigated with inductive heating prior to the fine blanking. The process forces and product quality properties such as die roll were investigated and found to be advantageous in comparison to non-heated fine blanking specimens of the same steel. The process forces and the die roll height decreased due to the heating.


Sign in / Sign up

Export Citation Format

Share Document