Stability of Adhered Material to the Cutting Edge of a Cermet Insert in Turning of an Austenitic Stainless Steel

2015 ◽  
Vol 656-657 ◽  
pp. 363-368
Author(s):  
Katsuhiko Sekiya ◽  
Sachio Watanabe ◽  
Keiji Yamada ◽  
Ryutaro Tanaka ◽  
Yasuo Yamane

Behavior of the material adhered to the cutting edge of a cermet insert was evaluated based on the profile of the machined surface in continuous turning of an austenite stainless steel SUS304. Height of the adhesion material decreased rapidly with increase of the cutting speed from 10m/min to 20m/min. The behavior of the adhered material was more stable than we expected. The adhered layer near the cutting edge was very stable, while the growth or breakage of the adhered material happened on the surface of the stable layer.

2012 ◽  
Vol 723 ◽  
pp. 247-251
Author(s):  
Hai Dong Yang ◽  
Zhi Ding

Austenitic stainless steel has poor cutting performance, especially when the inappropriate choice of tool materials and cutting parameters, cutting tool life will be shortened and the quality of machined surface is poor. In this paper, 0Cr18Ni9 stainless steel dry cutting tests had been done with nano-TiAlN coated carbide blade YGB202, the relationship between tool life and cutting speed, tool wear mechanism had been analyzed. In order to improve the processing efficiency and tool life, process parameters were optimized.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hitoshi Ozaki ◽  
Yosuke Koike ◽  
Hiroshi Kawakami ◽  
Jippei Suzuki

Recently, laser cutting is used in many industries. Generally, in laser cutting of metallic materials, suitable assist gas and its nozzle are needed to remove the molten metal. However, because of the gas nozzle should be set closer to the surface of a workpiece, existence of the nozzle seems to prevent laser cutting from being used flexible. Therefore, the new cutting process, Assist Gas Free laser cutting or AGF laser cutting, has been developed. In this process, the pressure at the bottom side of a workpiece is reduced by a vacuum pump, and the molten metal can be removed by the air flow caused by the pressure difference between both sides of the specimen. In this study, cutting properties of austenitic stainless steel by using AGF laser cutting with 2 kW CO2 laser were investigated. Laser power and cutting speed were varied in order to study the effect of these parameters on cutting properties. As a result, austenitic stainless steel could be cut with dross-free by AGF laser cutting. When laser power was 2.0 kW, cutting speed could be increased up to 100 mm/s, and kerf width at specimen surface was 0.28 mm.


2020 ◽  
Vol 61 (714) ◽  
pp. 147-153
Author(s):  
Tomomi SHIRATORI ◽  
Tomoaki YOSHINO ◽  
Takuya AIHARA ◽  
Yohei SUZUKI ◽  
Shizuka NAKANO ◽  
...  

2013 ◽  
Vol 685 ◽  
pp. 68-75 ◽  
Author(s):  
Salman Pervaiz ◽  
Ibrahim Deiab ◽  
Basil Darras ◽  
Amir Rashid ◽  
Mihai Nicolescu

Titanium alloys are labeled as difficult to materials because of their low machinability rating. This paper presents an experimental study of machining Ti-6Al-4V under turning operation. All machining tests were conducted under dry, mist and flood cooling approaches by using a TiAlN coated carbide cutting inserts. All cutting experiments were conducted using high and low levels of cutting speeds and feed rates. The study compared surface finish of machined surface and flank wear at cutting edge under dry, mist and flood cooling approaches. Scanning electron microscopy was utilized to investigate the flank wear at cutting edge under various cooling approaches and cutting conditions. Investigation revealed that TiAlN coated carbides performed comparatively better at higher cutting speed.


Author(s):  
Yingshuai Xu ◽  
Ping Zou ◽  
Yu He ◽  
Shuo Chen ◽  
Yingjian Tian ◽  
...  

The aim of this paper is to present an experimental investigation of the cutting forces, surface quality, tool wear and chip shape in ultrasonic vibration assisted turning (UAT) of 304 austenitic stainless steel (ASS 304) in comparison to conventional turning (CT). This study focuses on the solution of the machining difficulties of ASS 304 and high demands for the processing quality and efficiency. The machining system of UAT is schemed out to assure the desired machining effect by utilizing ultrasonic vibration method. Meanwhile, a series of systematic experiments are performed with and without ultrasonic vibration using the designed machining system of UAT with cemented carbide coated cutting tool. The results obtained from the UAT and CT experiments demonstrate that the cutting effect of UAT is much better than that of CT. Furthermore, the results of this research indicate that the ultrasonic amplitude, cutting speed, feed rate and depth of cut in UAT of ASS 304 have visible influence on the cutting forces, surface quality and tool wear. And reasonable selection of various technological variables in UAT can obtain lower cutting forces, more superior surface roughness, advantageous surface topography, slow and less tool wear, thin and smooth chips.


2020 ◽  
Vol 65 (1) ◽  
pp. 10-26
Author(s):  
Septi Boucherit ◽  
Sofiane Berkani ◽  
Mohamed Athmane Yallese ◽  
Riad Khettabi ◽  
Tarek Mabrouki

In the current paper, cutting parameters during turning of AISI 304 Austenitic Stainless Steel are studied and optimized using Response Surface Methodology (RSM) and the desirability approach. The cutting tool inserts used in this work were the CVD coated carbide. The cutting speed (vc), the feed rate (f) and the depth of cut (ap) were the main machining parameters considered in this study. The effects of these parameters on the surface roughness (Ra), cutting force (Fc), the specific cutting force (Kc), cutting power (Pc) and the Material Removal Rate (MRR) were analyzed by ANOVA analysis.The results showed that f is the most important parameter that influences Ra with a contribution of 89.69 %, while ap was identified as the most significant parameter (46.46%) influence the Fc followed by f (39.04%). Kc is more influenced by f (38.47%) followed by ap (16.43%) and Vc (7.89%). However, Pc is more influenced by Vc (39.32%) followed by ap (27.50%) and f (23.18%).The Quadratic mathematical models, obtained by the RSM, presenting the evolution of Ra, Fc, Kc and Pc based on (vc, f, and ap) were presented. A comparison between experimental and predicted values presents good agreements with the models found.Optimization of the machining parameters to achieve the maximum MRR and better Ra was carried out by a desirability function. The results showed that the optimal parameters for maximal MRR and best Ra were found as (vc = 350 m/min, f = 0.088 mm/rev, and ap = 0.9 mm).


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 972 ◽  
Author(s):  
Xiaojun Li ◽  
Zhanqiang Liu ◽  
Xiaoliang Liang

The application of AISI 304 austenitic stainless steel in various industrial fields has been greatly increased, but poor machinability classifies AISI 304 as a difficult-to-cut material. This study investigated the tool wear, surface topography, and optimization of cutting parameters during the machining of an AISI 304 flange component. The machining features of the AISI 304 flange included both cylindrical and end-face surfaces. Experimental results indicated that an increased cutting speed or feed aggravated tool wear and affected the machined surface roughness and surface defects simultaneously. The generation and distribution of surface defects was random. Tearing surface was the major defect in cylinder turning, while side flow was more severe in face turning. The response surface method (RSM) was applied to explore the influence of cutting parameters (e.g., cutting speed, feed, and depth of cut) on surface roughness, material removal rate (MRR), and specific cutting energy (SCE). The quadratic model of each response variable was proposed by analyzing the experimental data. The optimization of the cutting parameters was performed with a surface roughness less than the required value, the maximum MRR, and the minimum SCE as the objective. It was found that the desirable cutting parameters were v = 120 m/min, f = 0.18 mm/rev, and ap = 0.42 mm for the AISI 304 flange to be machined.


Author(s):  
Asonganyi Ateh Atayo ◽  
Mahmood Bashir ◽  
Muhammad Mustafizur Rahman ◽  
Rajeev Nair

Abstract Stainless steel 304 is one of the most commonly used steel types for corrosion resistance applications, but higher melting point is a limitation in industries from a manufacturing point of view. The non-conventional and subtractive manufacturing technique of laser cutting — a beam directed method, is suitable for these applications. A Gaussian laser beam is directed at the material that melts, burns, vaporizes, or is blown away by a jet of gas, leaving a fine edge with good surface finish. In this study, a numerical study was performed to study the multi-physical fluid processes of laser cutting. Towards this, modeling was performed using 1.2 mm thick austenitic stainless-steel coupons that was cut using a continuous width neodymium-doped yttrium aluminum garnet (CW Nd: YAG) laser. The results showed smoother surface cut, little dross formation, lower temperature rise in heat affected zones, and less finish time at a cutting speed of 8m/min, higher laser power above 1000 W, gas pressure of 11 bars, and focus distance of −1.0 mm. It was observed that an increase in laser power at a faster cutting speed led to an increase in kerf width, reduction in dross formation, lower temperature rises in heat affected zones and a reduced finish time. The simulation results were compared with published experimental data and found to be well within a maximum difference of 15%.


2021 ◽  
Author(s):  
Jin Shi ◽  
Wen Liu ◽  
Xin Cheng

Abstract Currently, austenitic stainless steel has been widely used for the pressure boundary, including reactors, separators and storage tanks serviced in energy, petrochemical, chemical and food industries in view of its inherent corrosion resistance. However, the corrosion resistance may deteriorate under some circumstances such as field welding and inappropriate post-weld heat treatment. A steam-water separator serviced in a power plant was found cracking and a large amount of steam leaked outside. The cracking was located in the heat-affected zone (HAZ) of the joint on the head side of the pressure vessel. The material of the head was SUS 304 austenite stainless steel. Failure analysis was conducted to investigate the cause of cracking. The testing and measurement included chemical composition analysis, metallographic examination, fracture surface observation and deposit elements analysis. Results showed that the cracking was intergranular and stress corrosion cracking (SCC) was the primary cause of failure. During the fabrication of the separator, the HAZ of the joint was overheated by the thermal input of welding. Brittle carbides such as M23C6 precipitating at the grain boundary, resulted in a narrow belt lack of chromium nearby known as sensitization. The corrosion resistance of the austenite stainless-steel decreased obviously there, and cracking failure occurred rapidly under tensile stress. The influencing factors discussed in this paper mainly focused on material performance, post-weld heat treatment, and corrosivity of medium. Austenitic stainless steel containing stabilizing elements or with low C content was recommended for the new vessel design in order to avoid similar cracking failure.


Sign in / Sign up

Export Citation Format

Share Document