TEM Analysis of Planar Defects in InGaAsN and GaAs Grown on Ge (001) by MOVPE

2016 ◽  
Vol 675-676 ◽  
pp. 639-642
Author(s):  
Pornsiri Wanarattikan ◽  
Sakuntam Sanorpim ◽  
Somyod Denchitcharoen ◽  
Visittapong Yordsri ◽  
Chanchana Thanachayanont ◽  
...  

InGaAsN on Ge (001) is proposed to be a part of the InGaP(N)/InGaAs/InGaAsN/Ge four-junction solar cell to increase a conversion efficiency over 40%. In this work, InGaAsN lattice-matched film and GaAs buffer layer grown on Ge (001) substrate by metal organic vapor phase epitaxy (MOVPE) were examined by transmission electron microscopy (TEM). Electron diffraction pattern of InGaAsN taken along the [110]-zone axis illustrates single diffracted spots, which represent a layer with a uniformity of alloy composition. Cross-sectional bright field TEM image showed line contrasts generated at the GaAs/Ge interface and propagated to the InGaAsN layer. Dark field TEM images of the same area showed the presence of boundary-like planar defects lying parallel to the growth direction in the InGaAsN film and GaAs buffer layer but not in the Ge substrate. TEM images with the (002) and (00-2) reflections and the four visible {111} planes reflections illustrated planar defects which are expected to attribute to antiphase boundaries (APBs). Moreover, the results observed from atomic force microscopy (AFM) and field emission electron microscopy (FE-SEM) demonstrated the surface morphology of InGaAsN film with submicron-sized domains, which is a characteristic of the APBs.

1987 ◽  
Vol 104 ◽  
Author(s):  
E. A. Fitzgerald ◽  
P. D. Kirchner ◽  
G. D. Petit ◽  
J. M. Woodall ◽  
D. G. Ast

ABSTRACTThe defect structure of lattice-mismatched one micron In0.12 Ga0.88As epilayers on (001) GaAs was studied with scanning cathodoluminescence (CL) and transmission electron microscopy (TEM). CL examination of the GaAs buffer layer revealed the formation of a segmented network of defects below the interface. Cross-sectional TEM analysis shows that these defects are dislocation half-loops extending from the interface, and the vast majority of these loops lie on the GaAs side of the interface. The dislocations in the GaAs buffer layer were determined to be edge dislocations. Thus, CL images show that edge dislocations in this system are centers for non-radiative recombination. We propose that two 60° dislocations with opposite screw and interface tilt components can glide into the buffer layer to form edge dislocations. Potential energy plots for 60° dislocations near the interface and interacting with interface dislocations supports this model.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


1999 ◽  
Vol 5 (S2) ◽  
pp. 776-777
Author(s):  
S.J. Lloyd ◽  
J.E. Pitchford ◽  
J.M. Molina-Aldareguia ◽  
Z.H. Barber ◽  
M.G. Blamire ◽  
...  

Nanoindentation allows the hardness of thin coatings and synthetic multilayer structures to be measured, since indentation depths can be as little as a few 10s of nm. In combination with the cross-sectional transmission electron microscopy (TEM) analysis described here it is possible to observe the deformation structure under an indent, and potentially to understand deformation mechanisms on a nm scale in a wide variety of materials. Synthetic multilayers are a particularly interesting system to investigate. Variations in hardness with the multilayer compositional repeat distance (A) have been reported for several systems. The highest hardnesses, which are in excess of what a simple “rule of mixtures” would predict, occur in nitride multilayers at A ∼5nm. Here we present some preliminary results showing the deformation structure in both a monolithic NbN film and a TiN/NbN multilayer in which both components have the rQck salt structure with lattice parameters 0.424nm (TiN) and 0.439nm (NbN).


1990 ◽  
Vol 216 ◽  
Author(s):  
S.G. Lawson-Jack ◽  
I.P. Jones ◽  
D.J. Williams ◽  
M.G. Astles

ABSTRACTTransmission electron microscopy has been used to assess the defect contents of the various layers and interfaces in (CdHg) Te heterostructures. Examination of cross sectional specimens of these materials suggests that the density of misfit dislocations at the interfaces is related to the layer thicknesses, and that the high density of dislocations which are generated at the GaAs/CdTe interface are effectively prevented from penetrating into the CdHgTe epilayer by a 3um thick buffer layer. The majority of the dislocations in the layers were found to have a Burgers vector b = a/2<110> and either lie approximately parallel or inclined at an angle of ∼ 60° to the interfacial plane.


1993 ◽  
Vol 312 ◽  
Author(s):  
J. C. P. Chang ◽  
B. K. Kad ◽  
S. R. Nutt ◽  
K. L. Kavanagh

AbstractWe report the structural characterization of the 3-D relaxation morphology of In0.4Ga0.6As grown on a step-graded InxGa1-xAs buffer layer on GaAs. Scanning electron microscopy showed “grooves” spaced on the order of microns running only in the [110] direction. Each groove was observed with cross-sectional transmission electron microscopy to mark the location of a vertical low-angle tilt and/or twist boundary. The veiy rough layer morphology may be the result of island coalescence or severe surface roughness that created the grain boudnaries as the layer grew. Strain relaxation in the In0.4Ga0.6As layer was much reduced in the [101] in-plane direction. The asymmetry in residual in-plane strains in the In0.3Ga0.7AS layer and/or the increased In composition may be responsible for the development of an anisotropic surface roughness. X-ray microanalysis revealed a periodic variation in layer composition which correlated with a fine contrast modulation presumably the result of phase segregation.


2006 ◽  
Vol 527-529 ◽  
pp. 383-386 ◽  
Author(s):  
Mark E. Twigg ◽  
Robert E. Stahlbush ◽  
Peter A. Losee ◽  
Can Hua Li ◽  
I. Bhat ◽  
...  

Using light emission imaging (LEI), we have determined that not all planar defects in 4H-SiC PiN diodes expand in response to bias. Accordingly, plan-view transmission electron microscopy (TEM) observations of these diodes indicate that these static planar defects are different in structure from the mobile stacking faults (SFs) that have been previously observed in 4H-SiC PiN diodes. Bright and dark field TEM observations reveal that such planar defects are bounded by partial dislocations, and that the SFs associated with these partials display both Frank and Shockley character. That is, the Burgers vector of such partial dislocations is 1/12<4-403>. For sessile Frank partial dislocations, glide is severely constrained by the need to inject either atoms or vacancies into the expanding faulted layer. Furthermore, these overlapping SFs are seen to be fundamentally different from other planar defects found in 4H-SiC.


2014 ◽  
Vol 20 (4) ◽  
pp. 1262-1270 ◽  
Author(s):  
Duggi V. Sridhara Rao ◽  
Ramachandran Sankarasubramanian ◽  
Kuttanellore Muraleedharan ◽  
Thorsten Mehrtens ◽  
Andreas Rosenauer ◽  
...  

AbstractIn GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the InxGa1−xAs channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the InxGa1−xAs layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the InxGa1−xAs channel layer was pseudomorphically grown leading to tetragonal strain along the [001] growth direction and that the average indium content (x) in the epilayer is ~0.12. We found consistency in the results obtained using various methods of analysis.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 18-25 ◽  
Author(s):  
P. C. WO ◽  
P. R. MUNROE ◽  
Z. F. ZHOU ◽  
Z. H. XIE ◽  
K. Y. LI

The deformation microstructures generated by nanoindentation of multilayer coatings consisting of TiSiN layers alternating with ten TiN interlayers, were examined by cross-sectional transmission electron microscopy (XTEM). Two multilayered coatings were studied: a thin TiSiN coating interlayered with thick TiN interlayer and a thick TiSiN coating alternated with thin TiN layers. A monolithic TiSiN coating was also examined for comparison. Surface morphology of the samples was found to be variable. Both surface roughness and coating hardness increase with the thickness of the outermost TiSiN layer. All samples show columnar structures, and for the multilayer coatings, epitaxial growth of these columnar grains through the TiSiN / TiN multilayers was observed. Stair-shaped shear cracks can be seen in the multilayer coating alternated with thick TiN interlayers, whereas radial and edge cracks are observed in the coating multilayered with thin TiN layers and in the monolithic coating. TEM analysis also suggests that columnar grains help to resist the initiation of edge cracks. Compared to other studies on similar coating systems with fewer periods of interlayers, the deformation observed here appears less severe, indicating an improvement in the strength of the coating through increasing the number of interlayers.


2001 ◽  
Vol 16 (2) ◽  
pp. 489-502 ◽  
Author(s):  
M. A. Zurbuchen ◽  
J. Lettieri ◽  
Y. Jia ◽  
D. G. Schlom ◽  
S. K. Streiffer ◽  
...  

Portions of the same epitaxial (103)-oriented SrBi2Nb2O9 film grown on (111) SrTiO3 for which we recently reported the highest remanent polarization (Pr) ever achieved in SrBi2Nb2O9 (or SrBi2Ta2O9) films, i.e., Pr = 15.7 μC/cm2, have been characterized microstructurally by plan-view and cross-sectional transmission electron microscopy (TEM) along three orthogonal viewing directions. SrBi2Nb2O9 grows with its c axis tilted 57° from the substrate surface normal in a three-fold twin structure about the substrate [111], with the growth twins' c axes nominally aligned with the three 〈100〉 SrTiO3 directions. (103) SrBi2Nb2O9 films with and without an underlying epitaxial SrRuO3 bottom electrode have been studied. Dark-field TEM imaging over a 12 μm2 area shows no evidence of second phases (crystalline or amorphous). A high density of out-of-phase boundaries exists in the films.


Sign in / Sign up

Export Citation Format

Share Document