Effect of Strain on the Anisotropy Coefficient of Sheet Alloys AA2024, Ti-2Al-1Mn, Titanium Grade 2, STEEL X10CrNiTi18-9

2016 ◽  
Vol 684 ◽  
pp. 366-370 ◽  
Author(s):  
Ekaterina A. Nosova ◽  
Fedor Vasilievich Grechnikov

Anisotropy of the plastic properties is an index of sheet’s ability to stamping. In this work the transverse deformation coefficient and r-value were used. Uniaxial test was made for annealed pieces of 1 mm thickness from aluminum alloy AA2024, steel X10CrNiTi18-9, Titanium Grade 2 and titanium alloy Ti-2Al-1Mn. Pieces were cut at angle of 0, 22.5, 45, 67.5 and 90O to the rolling direction. Steel pieces have anisotropy coefficients practically independent from angle between it’s’ axis and the rolling direction. Pieces made of AA2024 cut at angle 45О to the rolling direction have largest anisotropy coefficients. Titanium alloys have the largest coefficients for angle 67,5О between axis of piece and the rolling direction. Both indexes of anisotropy are higher for titanium alloys, which is property of HCP-metals.

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Kaifeng Wang ◽  
Bonan Zhou ◽  
Jingjing Li ◽  
John E. Carsley ◽  
Yang Li

This paper described the effects of prestraining and annealing on plastic anisotropy (r-value) of aluminum alloy 5182-O sheets including two prestrain paths and two annealing conditions. During the prestraining and annealing processes, r-value changed depending on prestrain paths and annealing conditions. Although there were slight changes of the normal anisotropy coefficient, r¯, during prestraining and annealing processes, the planar anisotropy coefficient, Δr, increased significantly, especially for the uniaxial prestrain condition. This could accelerate the development of earing during a sheet forming operation. Also, the corresponding sheet textures in rolling direction (RD)/TD plane after prestraining and annealing processes were observed through electron backscatter diffraction (EBSD) analysis to explain the r-value changes, where the viscoplastic self-consistent (VPSC) model was used to correlate the determined texture to measured r-values. It is found that the sheet texture also had significant changes relating to the prestrain paths and annealing conditions resulting in varied r-values.


CORROSION ◽  
2005 ◽  
Vol 61 (10) ◽  
pp. 987-1003 ◽  
Author(s):  
F. Hua ◽  
K. Mon ◽  
P. Pasupathi ◽  
G. Gordon ◽  
D. Shoesmith

2020 ◽  
Vol 51 (12) ◽  
pp. 6584-6591
Author(s):  
Maciej Motyka ◽  
Wojciech J. Nowak ◽  
Bartek Wierzba ◽  
Witold Chrominski

AbstractThe aim of the research was to investigate the microstructural changes caused by diffusion through interface between α and β titanium solid solutions. For this purpose, a diffusion couple composed of two single-phase titanium alloys—α type commercially pure (CP) titanium Grade 2 and near-β Ti-15V-3Al-3Cr-3Sn—was made by annealing at a temperature of 850 °C in an inert atmosphere. The performed heat treatment caused partial diffusion bonding (DB) where the α/β-interface was clearly visible. Based on the results of microscopic (light microscope (LM), scanning electron microscope/electron backscatter diffraction (SEM/EBSD), and transmission electron microscope (TEM)) examination, a significant microstructure evolution of near-β alloy in the region near the interface (diffusion-affected zone) was revealed. It was found that needlelike phases were formed both in α and β solid solutions. Moreover, in the near-β titanium alloy, pores aligned in the Frenkel plane were found. The latter finding indicated that the diffusion of alloying elements of near-β alloy is the most probable reason for the observed microstructural changes. Additionally, the “grooving” phenomenon at the α/β interface was found and it was correlated with faster diffusion through grain boundaries, rather than volume diffusion. Finally, the pore size was measured and numerically modeled. The calculated values were in good agreement with the experimental ones.


2020 ◽  
Vol 8 (6) ◽  
pp. 5810-5814

Titanium and Titanium alloys are widely used for aircraft as a material having light weight, high strength and corrosion resistance. The titanium and its alloys are compatible with carbon fibre reinforced plastic components with respect to corrosion and thermal behaviour. Response of Titanium grade 2 and grade 12 at different speed during sliding is to be studied. The literature survey shows inadequate studies on wear response of these alloys. Experiments using pin on disc test rigs were conducted. Speed level of 500rpm, 1000rpm, and 1500 rpm were used. The sliding was found to be sensitive to sliding speed. As speed increases from 500 rpm to 1000 rpm the coefficient of friction increased. At speed of 1500 rpm two steady phase of sliding identified. In one of the steady phase the coefficient of friction was found to be more than the coefficient of friction at 1000 rpm. Where in another steady phase of sliding the coefficient of friction was found to be comparable or less then the coefficient of friction at 1000 rpm


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1456
Author(s):  
Elizabeth E. Sackett ◽  
Martin R. Bache

Previous mechanistic models, proposed to explain the process of damage accumulation and stress redistribution between strong and weak regions inherent within the microstructure of α/β and near α titanium alloys, are validated through a matrix of experiments employing a non-standard variant of the alloy Ti 685. The grain size of the model material was deliberately processed to offer grains up to 20 mm in diameter, to facilitate constitutive measurements within individual grains. A range of experiments were performed under static and cyclic loading, with the fatigue cycle conducted under either strain or load control. Data will be reported to demonstrate significant variations in elastic and plastic properties between grains and emphasise the role of time dependent strain accumulation. Implications for the “dwell sensitive fatigue” or “cold creep” response of conventional titanium alloys will be discussed.


Author(s):  
V. Sovgira ◽  
V. Sovgira

В статье приведены результаты выполненных исследований механизма интенсивности развития деструкций, псевдопластического деформирования и разрушения однородно и неоднородно сжатого тяжелого бетона призменной прочностью в диапазоне fc1522,265,6 МПа при мягком и жестком режиме нагружения одноосно и внецентренно сжатых бетонных колонн. Выполнен анализ литературных источников с исследованиями изменения упруго-пластических характеристик vc, Еcsek тяжелого бетона с учетом влияния значимых факторов и их изменение с увеличением уровня нагрузки при описании зависимости c-cх и c,е - cх,е. Установлено, что рекомендованные Строительными Нормами vcи и Ес одноосно сжатого бетона количественно и качественно не отражают характер изменения упруго-пластических свойств неоднородно сжатого бетона с ростом уровня нагрузки. Предложены аналитические выражения зависимости изменения коэффициентов упругости (vc, vc,е), секущих модулей упругости (Еcsek, Еc,еsek) и коэффициентов интенсивности развития деструкций (KD, KD,е) однородно и неоднородно сжатого бетона с ростом уровня нагрузки при мягком и жестком режиме нагружения исследованных серий тяжелого бетона с использованием сlx сlx,е Ес Nc,e/Ncu,e сu и сu,е, отражающих процесс изменения упруго-пластических свойств бетона на восходящих и нисходящих участках полных диаграмм деформирования бетона и их существенное отличие при центральном и внецентренном сжатии. Исследованиями отмечено, что интенсивность развития деструкций в структуре неоднородно нагруженного бетона существенно ниже, чем в одноосно сжатом. Экспериментами установлено характерное изменение по высоте сечения внецентренно сжатых бетонных элементов коэффициента поперечных деформаций , свидетельствующее о том, что с увеличением уровня нагрузки коэффициент наиболее сжатой фибры на всех уровнях нагрузки, значительно (в 1,21,5 раза) меньше волокон менее нагруженных фибр. Отмеченное свойство обусловлено изменением внутреннего напряженного состояния с ростом нагрузки и перераспределением напряжений силовыми связями структуры неоднородно сжатого бетона с субмикро- и микроуровней волокон наиболее нагруженной грани по высоте сечения внецентренно сжатых элементов на менее нагруженные волокна. Этот процесс перераспределения напряжений по высоте сечения бетонных колонн как свойство проявляется на изменении поперечной деформации cу,е и, как следствие изменения коэффициента поперечной деформации , влияющего на напряженное состояние сжатой зоны подобно внутренним силовым связям, обеспечивающим существенное повышение максимальных напряжений и деформаций в неоднородно сжатом бетоне.The article presents the results of studies of the intensity of development of destructions, pseudoplastic deformation and destruction of uniformly and non-uniformly compressed heavy concrete with prism strength in the range of fc1522,265,6 MPa in the soft and hard loading mode of uniaxially and eccentrically compressed concrete columns. The analysis of literary sources with studies of changes in the elastic-plastic characteristics of vc, Еcsek heavy concrete, taking into account the influence of significant factors and their change with increasing load level when describing the dependence c-cх and c,е - cх,е . It has been established that the vcu and Ес recommended by the Building Norms of uniaxially compressed concrete do not quantitatively and qualitatively reflect the nature of the change in the elastic-plastic properties of non-uniformly compressed concrete with increasing load levels. Analytical expressions are proposed for the dependence of the change in elasticity coefficients (vc, vc,е), cross-section elastic modulus (Еcsek, Еc,еsek) and the intensity factors for the development of destructions (KD, KD,е) of uniformly and non-uniformly compressed concrete and hard loading mode of the studied series of heavy concrete using: сlx сlx,е Ес Nc,e/Ncu,e сu and сu,е , reflecting the process of changing the elastic-plastic properties of concrete in the ascending and descending parts of the complete concrete deformation diagrams and their significant difference under uniaxial and eccentrically compression. Studies have noted that the intensity of the development of destructions in the structure of non-uniformly loaded concrete is significantly lower than in uniaxially compressed. Experiments established a characteristic change in the height of the cross section of eccentrically compressed concrete elements of the transverse strain coefficient , indicating that with an increase in the load level, the coefficient of the most compressed fiber at all load levels is significant (1,2-1,5 times) less fibers, less loaded fibers. This property is caused by the change in the internal stress state with increasing load and stress redistribution by force bonds of the structure in non-uniformly compressed concrete from submicro- and microlevels of the fibers of the most loaded face along the height of the cross section of eccentrically compressed elements to less loaded fibers. This process of stress redistribution along the height of the cross section of concrete columns as a property manifests itself in a change in transverse deformation cу,е and, as a result, a change in the transverse deformation coefficient , affecting the stress state of the compressed zone, similar to internal force connections, providing a significant increase in maximum stresses and strains in non-uniformly compressed concrete.


Author(s):  
Tiangan Lian ◽  
Takashi Yashiki ◽  
Takenori Nakayama ◽  
Tomoaki Nakanishi ◽  
Rau´l B. Rebak

The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a small amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.


2014 ◽  
Vol 775-776 ◽  
pp. 427-430 ◽  
Author(s):  
R.A.C. Felix ◽  
Luiz Brandão ◽  
M.A. da Cunha ◽  
C.H.P. Paiva ◽  
J.R.L. Amaro ◽  
...  

It is well known that iron has a magnetocrystalline anisotropy and, therefore, the crystallographic texture has great influence on its magnetic properties. In most applications of non-oriented grain electrical steels, it is desirable that the magnetic properties are isotropic. In this work, modern quantitative texture analysis methods are used to characterize the crystallographic textures of many types of non-oriented grain electrical steels and their relation with the magnetic properties. The magnetocrystalline anisotropy coefficient is the parameter of texture analysis that is directly related to the magnetic properties. This paper analyzes the correlation between the magnetic properties of electrical steels with 3 wt.% to 5 wt.% silicon and their magnetocrystalline anisotropy coefficients.


2005 ◽  
Vol 495-497 ◽  
pp. 597-602 ◽  
Author(s):  
Tetsuo Sakai ◽  
K. Yoneda ◽  
S. Osugi

Large shear deformation was successfully introduced in 5182 aluminum alloy sheets by 2-pass differential speed warm rolling under a high friction condition. The roll speed ratio was varied from 1.0 to 2.0. When the roll speed ratio was smaller than 1.4, shear strain increased near the surface, but the strain decreased to zero at the mid-thickness. At a roll speed ratio larger than 1.4, shear strain was introduced even at the mid-thickness, and it increased near the surface. Thus the shear strain increased with the roll speed ratio. After 2-pass differential speed rolling, a large shear strain prevailed throughout the thickness. The rolling direction of the second pass was so selected that the direction of shear deformation introduced in the second pass was similar to (unidirectional shear rolling) or opposite (reverse shear rolling) that in the first pass. A shear texture with main components of {111}<110>, {112}<110> and {001}<110> prevailed throughout the thickness, and conventional rolling textures such as {112}<111> or {123}<634> orientation were not detected in any part of thickness. The rolling direction of the second pass had little effect on the deformation texture. After recrystallization annealing, the shear texture components were retained. The intensity of the shear texture components after recrystallization was almost similar to the deformation texture. The r-value of the annealed sheet was slightly increased and the planar anisotropy of the r-value was decreased by differential speed rolling. Differential speed rolling, by which shear deformation can be introduced throughout the thickness, was thus shown to be a promising process for improving the physical and mechanical properties of rolled and annealed aluminum alloy sheets by texture control.


Sign in / Sign up

Export Citation Format

Share Document