Evaluation of Mechanical Properties of Surface Layer Injection Molded Polypropylene by Nanoindentation Test

2016 ◽  
Vol 699 ◽  
pp. 86-90
Author(s):  
David Manas ◽  
Miroslav Manas ◽  
Martin Ovsik ◽  
Michal Stanek ◽  
Pavel Stoklasek ◽  
...  

The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) polymers were proved. The use of low doses of beta radiation for polypropylene and its influence on the changes of micro, macro mechanical properties was thoroughly studied. The specimens of polypropylene were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using WAXS and instrumented nano hardness test. The results of the measurements showed considerable increase in mechanical properties (indentation hardness, indentation elastic modulus) when the beta radiation are used.

2016 ◽  
Vol 699 ◽  
pp. 37-42 ◽  
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek

Radiation crosslinking of polyamidu 6 (PA 6) is a well-recognized modification of improving basic material characteristics. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. This research paper deals with the possible utilization of irradiated PA6. The material already contained a special cross-linking agent TAIC (5 volume %), which should enable subsequent cross-linking by ionizing β – radiation (15, 30 and 45 kGy). The effect of the irradiation on mechanical behavior of the tested PA 6 was investigated. Material properties created by β – radiation are measured by nanoindentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of nanoindentation test shows increasing in nanomechanical properties of surface layer. The highest values of nanomechanical properties were reached radiation dose of 45 kGy, when the nanomechanical values increased by about 95%. These results indicate advantage cross-linking of the improved mechanical properties.


2016 ◽  
Vol 368 ◽  
pp. 162-165
Author(s):  
David Manas ◽  
Martin Ovsík ◽  
Miroslav Maňas ◽  
Michal Stanek ◽  
Lenka Hylová ◽  
...  

The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using high doses of beta radiation for glass fiber filled polyamide (PA) and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of glass fiber filled PA were made by injection moulding technology and irradiated by low doses of beta radiation (0, 132, 165 and 198 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using WAXS and instrumented microhardness test. The results of the measurements showed change some in micromechanical properties (indentation hardness) when high doses of beta radiation are used.


2015 ◽  
Vol 1120-1121 ◽  
pp. 3-6
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Pavel Stoklasek ◽  
...  

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Micromechanical changes in the surface layer of glass-filled PA-6 modified by beta radiation were measured by instrumented test of microhardness. The specimens were prepared by injection technology and subjected to radiation doses of 0, 66, 99, 132 kGy. Measurements of microhardness showed considerable changes of behavior of surface layer in middle as well as high radiation doses with higher values of indentation hardness and stiffness.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1198-1201 ◽  
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Pavel Stoklasek ◽  
...  

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Micromechanical changes in the surface layer of Thermoplastic elastomer (TPE-E) modified by beta radiation were measured by instrumented test of microhardness. The specimens were prepared by injection technology and subjected to radiation doses of 0, 66, 99, 132 kGy. Measurements of microhardness showed considerable changes of behavior of surface layer in middle as well as high radiation doses with higher values of indentation hardness and stiffness.


2016 ◽  
Vol 699 ◽  
pp. 43-48
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Vojtech Senkerik

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Micro-mechanical changes in the surface layer of glass-fiber filled PA 66 modified by beta radiation were measured by the Depth Sensing Indentation - DSI method on samples which were non-irradiated and irradiated by different doses of the β - radiation. The specimens were prepared by injection technology and subjected to radiation doses of 0, 33, 66 nad 99 kGy. The change of micro-mechanical properties is greatly manifested mainly in the surface layer of the modified polypropylene where a significant growth of micro-hardness values can be observed. Indentation modulus increased from 1.8 to 3.0 GPa (increasing about 66%) and indentation hardness increased from 87 to 157 MPa (increasing about 80%). This research paper studies the influence of the dose of irradiation on the micro-mechanical properties of semi-crystalline polyamide 66 filled by 30% glass fiber at room temperature. The study is carried out due to the ever-growing employment of this type of polymer.


2014 ◽  
Vol 606 ◽  
pp. 253-256 ◽  
Author(s):  
Martin Ovsik ◽  
Petr Kratky ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
...  

This article deals with the influence of different doses of Beta radiation to the structure and mico-mechanical properties of Low-density polyethylene (LDPE). Hard surface layers of polymer materials, especially LDPE, can be formed by radiation cross-linking by β radiation with doses of 33, 66 and 99 kGy. Material properties created by β radiation are measured by micro-hardness test using the DSI method (Depth Sensing Indentation). Individual radiation doses caused structural and micro-mechanical changes which have a significant effect on the final properties of the LDPE tested. The highest values of micro-mechanical properties were reached at radiation dose of 66 and 99 kGy, when the micro-hardness values increased by about 21%. The changes were examined and confirmed by X-ray diffraction.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Man Lei ◽  
Fa-ning Dang ◽  
Haibin Xue ◽  
Mingming He

In order to study the mechanical properties of granite at the micro- and nanoscale, the load-displacement curve, residual indentation information, and component information of the quartz, feldspar, and mica in granite were obtained using a nanoindentation test, a scanning electron microscope (SEM), and X-ray diffraction (XRD). The elastic modulus and the hardness of each component of the granite were obtained through statistical analysis. Treating rock as a composite material, the relation between the macro- and microscopic mechanical properties of rock was established through the theory of micromechanical homogenization. The transition from micromechanical parameters to macromechanical parameters was realized. The equivalent elastic modulus and Poisson’s ratio of the granite were obtained by the Self-consistent method, the Dilute method, and the Mori-Tanaka method. Compared with the elastic modulus and the Poisson ratio of granites measured by a uniaxial compression test and the available data, the applicability of the three methods were analyzed. The results show that the elastic modulus and hardness of the quartz in the granite is the largest, the feldspar is the second, the mica is the smallest. The main mineral contents in granite were analyzed using the semiquantitative method by XRD and the rock slice identification test. The elastic modulus and the Poisson ratio of granite calculated by three linear homogenization methods are consistent with those of the uniaxial compression test. After comparing the calculation results of the three methods, it is found that the Mori-Tanaka method is more suitable for studying the mechanical properties of rock materials. This method has an important theoretical significance and practical value for studying the quantitative relationship between macro- and micromechanical indexes of brittle materials. The research results provide a new method and an important reference for studying the macro-, micro-, and nanomechanical properties of rock.


2020 ◽  
pp. 009524431989728
Author(s):  
Sajjad Daneshpayeh ◽  
Faramarz Ashenai Ghasemi ◽  
Shahnoosh Masoumi ◽  
Meysam Nouri Niyaraki

The goal of the present study is to investigate and predict the mechanical properties, including impact strength, elastic modulus, and elongation-at-break of quaternary nanocomposites based on polypropylene (PP)/ethylene–propylene–diene monomer (EPDM)/glass fiber (GL)/graphene nanosheets (GPn) by fuzzy logic. Three parameters in different levels, including EPDM, GL, and GPn, were chosen for combination with a PP matrix. The fuzzy logic surfaces showed that the EPDM rubber and GPn had the main role in the elastic modulus of nanocomposites. The high levels of EPDM content resulted in a considerable increase in impact strength and, generally, the presence of EPDM had no effect on elongation-at-break.


1979 ◽  
Vol 47 (1) ◽  
pp. 26-31 ◽  
Author(s):  
M. King ◽  
N. Viires

The effect of methacholine chloride (M) on tracheal mucus was investigated in three conscious tracheostomized dogs. Aerosols of M in concentrations of 2--32 mg/ml were delivered intratracheally for 1 min. Mucus was sampled with a cytology brush at 2 min postchallenge and at irregular intervals thereafter. The mechanical properties of each sample were determined in the magnetic microrheometer, and correlated with mucociliary transportability as assayed by the frog palate technique. With high doses of M, there was an increase in volume of secretion collected per unit time. The elastic modulus (G′) at 2 min postchallenge went up (to 1.5 x 2.3 x control for 16 and 32 mg/ml, respectively) then fell below control before returning to base line after 30 or 45 min. With low doses of M (2--8 mg/ml) the secretion rate was also above control, but only a decrease in G′ (to 0.54 x control) was observed. The decrease in G′ at low doses did not significantly alter the frog palate transport rate; however, the increase at higher doses did impede mucociliary transport.


2015 ◽  
Vol 752-753 ◽  
pp. 363-368
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Petr Fiala ◽  
...  

Micromechanical changes in the surface layer of glass-filled PA-6 modified by beta radiation were measured by instrumented test of microhardness. The specimens were prepared by injection technology and subjected to radiation doses of 0, 66, 99, 132 kGy. Measurements of microhardness showed considerable changes of behavior of surface layer in middle as well as high radiation doses with higher values of indentation hardness and stiffness.


Sign in / Sign up

Export Citation Format

Share Document