A Fast Three-Dimensional Model for Strip Rolling

2016 ◽  
Vol 716 ◽  
pp. 566-578 ◽  
Author(s):  
Christian Overhagen ◽  
Paul Josef Mauk

Rolling Models have come a long way from the first empirical relations about forward slip and bite conditions to their current state, which allows local quantities to be calculated in two and three dimensions. In this paper, state-of-the-art of analytical modelling of the rolling process is shown with a fully three-dimensional rolling model for hot and cold strip rolling with stress distributions in the longitudinal, vertical and lateral directions. For this purpose, von Karman’s strip approach is extended to account for the stress gradient in lateral direction, as was already shown in different papers. The stress gradient in the vertical (through-thickness) direction is introduced by a modern implementation of Orowan’s inhomogeneous deformation theory. The local stress distributions are compared to results from Finite-Element Calculations obtained with modern FEM codes. It will be shown, under which circumstances expensive FEM calculations can be replaced by simpler models like the one proposed here, which are more time and cost-effective without a significant loss in result precision. The rolling model is extended with a Finite Element Beam Model for work and backup roll deformation, as well as local work roll flattening and thermal crown for hot rolling. The Effects of those features on stress distribution and exit strip profile are shown for hot and cold rolling.

2012 ◽  
Vol 538-541 ◽  
pp. 828-832
Author(s):  
Yun Fang Xie ◽  
Wei He

The finite element method was carried out three-Dimensions analysis of the solid shelves, gained the deformation characteristics and stress distributions of the solid shelves. Finite element analysis software ANSYS was used to analyze the solid shelves from the static. We have the results after correct loading and constraint and stress values comparison. A simulation example for three-dimensional shelves is presented to illustrate the effectiveness of the finite element analysis method.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2021 ◽  
Author(s):  
Roland Tormey

AbstractStudent-teacher relationships play an important role in both teacher and student experiences in higher education and have been found to be linked to learning, classroom management, and to student absenteeism. Although historically conceptualised in terms of immediacy or distance and measured with reference to behaviours, the growing recognition of the role of emotions and of power—as well as the development of a range of multidimensional models of social relationships—all suggest it is time to re-evaluate how student-teacher relationships are understood. This paper develops a theoretical model of student-teacher affective relationships in higher education based on three dimensions: affection/warmth, attachment/safety, and assertion/power. The three-dimensional model was tested using the Classroom Affective Relationships Inventory (CARI) with data from 851 students. The data supported the use of this multidimensional model for student-teacher relationships with both two- and three-dimensional models of relationships being identified as appropriate. The theoretical development of a multidimensional model and the empirical development of an instrument with which to explore these dimensions has important implications for higher education teachers, administrators and researchers.


Author(s):  
M Taylor ◽  
E W Abel

The difficulty of achieving good distal contact between a cementless hip endoprosthesis and the femur is well established. This finite element study investigates the effect on the stress distribution within the femur due to varying lengths of distal gap. Three-dimensional anatomical models of two different sized femurs were generated, based upon computer tomograph scans of two cadaveric specimens. A further six models were derived from each original model, with distal gaps varying from 10 to 60 mm in length. The resulting stress distributions within these were compared to the uniform contact models. The extent to which femoral geometry was an influencing factor on the stress distribution within the bone was also studied. Lack of distal contact with the prosthesis was found not to affect the proximal stress distribution within the femur, for distal gap lengths of up to 60 mm. In the region of no distal contact, the stress within the femur was at normal physiological levels associated with the applied loading and boundary conditions. The femoral geometry was found to have little influence on the stress distribution within the cortical bone. Although localized variations were noted, both femurs exhibited the same general stress distribution pattern.


Author(s):  
Patrick D. Lea ◽  
Charbel Farhat ◽  
Kevin G. Wang

This work extends and generalizes a recently developed fluid-structure coupled computational framework to model and simulate fluid-induced failure and fracture. In particular, a novel surface representation approach is proposed to represent a fractured fluid-structure interface in the context of embedded boundary method. This approach is generic in the sense that it is applicable to many different computational fracture models and methods, including the element deletion (ED) technique and the extended finite element method (XFEM). Two three-dimensional model problems are presented to demonstrate the salient features of the computational framework, and to compare the performance of ED and XFEM in the context of fluid-induced failure and fracture.


1977 ◽  
Vol 18 (80) ◽  
pp. 373-389 ◽  
Author(s):  
D. Jenssen

AbstractA three-dimensional model of the temperature and velocity distribution within any arbitrary-shaped ice mass is described. There is a mutual interaction in the model between the flow of the ice and its thermodynamics, since the flow law used in the model is temperature-dependent.Ice growth in three dimensions is governed by mass accumulation through precipitation, by mass depletion through loss of ice over the ocean, and by continuity requirements. Phase changes at the base of the ice are accounted for. The model has been applied in art exploratory manner to the Greenland ice sheet. Changes in the ice shape and temperature are presented and discussed. The basic shortcoming of the model as here presented appears primarily due to the coarse finite-difference mesh used, and to an unsophisticated approach to modelling the boundary ice.


2020 ◽  
Vol 3 (4) ◽  
pp. 1209
Author(s):  
Anthony Fariman ◽  
Leo S. Tedianto

ABSTRAKBalok tinggi beton bertulang merupakan salah satu struktur khusus yang dapat memikul beban cukup besar dan umumnya digunakan sebagai transfer girder, struktur lepas pantai, struktur dinding, dan pondasi. Kehadiran bukaan pada balok tinggi dapat memfasilitasi jalur saluran AC, saluran pipa, jaringan kabel dan lain-lain. Dengan adanya bukaan pada balok tinggi dapat memberikan beberapa efek samping yaitu terjadinya diskontinuitas geometri, tegangan terdistribusi non-linier pada balok tinggi, berkurangnya kekuatan dari balok, dan timbulnya konsentrasi tegangan di sekitar bukaan. Penelitian ini bertujuan untuk menganalisis efek dari kehadiran bukaan pada balok tinggi di atas dua perletakan (sendi-rol) dan dibebani beban terpusat di tengah bentang balok lalu memvariasikan bentuk bukaan (persegi, persegi panjang, dan lingkaran) dan lokasi bukaan. Tegangan lentur pada balok tinggi dan konsentrasi tegangan yang terjadi di sekitar bukaan merupakan hal yang akan dibahas dalam penelitian. Analisis akan dibantu dengan Midas FEA yang merupakan program berbasis elemen hingga dan  pemodelan dilakukan dengan elemen solid tiga dimensi. Hasil dari analisis ini menunjukkan bahwa kehadiran bukaan pada balok tinggi menyebabkan kenaikan tegangan secara signifikan. Lokasi dari bukaan yang mendekati daerah tengah bentang balok juga sangat mempengaruhi besarnya tegangan yang terjadi.ABSTRACTReinforced concrete deep beam is one of the special structures that can carry quite a big load and generally used as a transfer girder, offshore structure, wall structure, and foundation. The appearance of openings in deep beams can facilitate AC pipelines, plumbing pipes, cable networks, etc. The existence of openings in deep beams can provide a few side effects such as geometric discontinuity, non-linear stress distributions over the deep beams, reduced strength of the deep beams, and stresses concentration will emerged around the openings. The purpose of this research is to analyze the effects from the existence of openings in deep beams on two supports (hinge and roller) and loaded by concentrated load in mid-span then variate the shape of openings (square, rectangle, and circle) and location of the openings. Flexural stresses in deep beams and the stress concentrations that occur around the openings are discussed in this research. The analysis will be assisted by Midas FEA which is a finite element based program and modelling will be executed in three dimensional solid elements. The result of this analysis showed that the existence of the openings in deep beams can cause stresses to increase significantly high. The location of the openings close to the mid-span of the deep beams also affect the amount of the stresses that occurs.


Author(s):  
S. Khajehpour ◽  
R. G. Sauve´ ◽  
N. Badie

A method has been developed to incorporate the local three-dimensional shell behavior of two concentric tubes in the two-dimensional beam modeling of the problem. The two dimensional modeling of fuel channels in CANDU pressurized heavy water nuclear reactors is used in lieu of a more accurate three dimensional finite element approach in order to reduce the on-line simulation time which greatly affects the SLAR (Spacer Location And Repositioning) maintenance operation cost during outage. However, effort must be made to include the three-dimensional shell behavior of these channels into the two-dimensional modeling. In recent studies a nonlinear force-dependent model for contact stiffness between the calandria tube and pressure tube has been developed. However, local deformation of calandria the tube at spacer locations due to in-reactor creep leads to settling of the spacer into the calandria tube that consequently reduces the gap between the two tubes. In this work, the effect of local deformation (elastic and creep) of calandria tubes on modeling of contact at spacer locations is assessed using a three dimensional finite element code. The result is incorporated into a two-dimensional beam model of the problem as a reduction in size of the spacers that separate the two tubes. It is shown that the proposed method increases the accuracy of prediction of contact time and the spacer. In general, the method described in this paper suggests a way to incorporate local shell deformation into beam models of slender shell structure.


Sign in / Sign up

Export Citation Format

Share Document