scholarly journals Feasibility Study of Complex Sheet Hydroforming Process: Experimental and Modelling

2016 ◽  
Vol 716 ◽  
pp. 685-691 ◽  
Author(s):  
Mohamed Mohamed ◽  
David Carty ◽  
John Storr ◽  
Nicola Zuelli ◽  
Paul Blackwell ◽  
...  

The application of finite element method (FEM) in the area of metal forming and material processing has significantly increased in the recent years. The presented study provides details of the development of a finite element modelling approach to form a part via sheet hydroforming (SHF) process. Both FEM analysis and experimental trials were introduced in this study to produce a complex shape component from Inconel 718 material. The FEM provides a robust feasibility study for forming this part in terms of blank design, load path and process design optimisation. The simulated hydroformed part was validated by performing experimental trials. The analysis demonstrated close correlation between the predicted FE model and the physical trial.

Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


Author(s):  
Mohammad Habibi Parsa ◽  
Payam Darbandi

A new approach for manufacturing of shell fender is proposed and has been examined numerically and experimentally. The new suggested method is based on sheet hydroforming process, which has a lot of advantages over conventional deep drawing process. After defining the shape of initial blank using an inverse finite element program, numerical evaluation of the proposed sheet hydroforming process for production of shell fender has been carried out using an explicit finite element code considering fluid pressure, boundary conditions and tools. Then experimental evaluation has been carried out using down sized specimen and the results have been compared with results of previous simulations. It has been shown that there are similar trends between finite element and experimental results.


2014 ◽  
Vol 622-623 ◽  
pp. 772-779 ◽  
Author(s):  
Amirreza Yaghoobi ◽  
Mohammad Bakhshi-Jooybari ◽  
Abdolhamid Gorji ◽  
Hamid Baseri

The success of sheet hydroforming process largely depends on the loading pressure path. Pressure path is one of the most important parameters in sheet hydroforming process. In this study, a combination of finite element simulation, artificial intelligence and simulated annealing optimization have been utilized to optimize the pressure path in producing cylindrical-spherical parts. In the beginning, the finite element model was verified based on laboratory experimental results. The experiments were designed and a radial basis neural network model was developed using data generated from verified finite element model to predict the thickness in the critical region of the product. Results indicated that the neural network model could be applied successfully to predict the sheet thickness in the critical region. In addition, the neural network model was used as a fitness function in simulated annealing algorithm to minimize the thickening in the above mentioned critical region. The final results showed that utilization of the optimized pressure path yields good thickness distribution of the part.


Author(s):  
Hassan Karampour ◽  
Faris Albermani ◽  
Peter Major

Novel analytical solution to lateral buckling of pipelines based on localization of buckle patterns is proposed. Finite element study is conducted on lateral buckling of a full length pipe. Analytical and FE results are compared and advantages of analytical solution to FE model are highlighted. Interaction between lateral buckling and propagation buckling of cylindrical pipe and textured pipe under transient load path are investigated.


2011 ◽  
Vol 110-116 ◽  
pp. 1477-1482 ◽  
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of load path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. The pressure path was obtained by using finite element simulation and its validation with experiments. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that if pressure reaches to maximum faster, bulge value and thinning of the part will be more and wrinkling value will be less.


2011 ◽  
Vol 473 ◽  
pp. 618-623
Author(s):  
Khalil Khalili ◽  
Seyed Yousef Ahmadi-Brooghani ◽  
Amir Ashrafi

Tube hydroforming process is one of the metal forming processes which uses internal pressure and axial feeding simultaneously to form a tube into the die cavity shape. This process has some advantages such as weight reduction, more strength and better integration of produced parts. In this study, T-shape tube hydroforming was analyzed by experimental and finite element methods. In Experimental method the pulsating pressure technique without counterpunch was used; so that the internal pressure was increased up to a maximum, the axial feeding was then stopped. Consequently, the pressure decreased to a minimum. The sequence was repeated until the part formed to its final shape. The finite element model was also established to compare the experimental results with the FE model. It is shown that the pulsating pressure improves the process in terms of maximum protrusion height obtained. Counterpunch was eliminated as being unnecessary. The results of simulation including thickness distribution and protrusion height were compared to the part produced experimentally. The result of modeling is in good agreement with the experiment. The paper describes the methodology and gives the results of both experiment and modeling.


2011 ◽  
Vol 120 ◽  
pp. 70-73
Author(s):  
Sen Kai Lu ◽  
Jian Huan Su ◽  
Shu De Liao ◽  
Jia Qiang Su ◽  
Bo Wang ◽  
...  

A finite element method (FEM) analysis based on COSMOS study with the aim to find the causes and effects of deformations in the interface between the rear axle housing and the central gear house of the four-wheel farm transporters during operation has been performed. The present design is analyzed with the aid of a mixed-fidelity, or mixed-grain, FE-model. Boundary conditions are defined on the bushings in front of the rear axle and on the air bellows behind the rear axle. The different load scenarios are represented by forces either on the wheels, the central gear or on the rear axle housing. The simulated results showed that with the worst combined load case for the different proposed design solutions suggested that modified design with a thicker flange and a removed stiffener would be significantly better than the present design; the simulated max displacement is about 0.5 mm and satisfied the design requirement. It indicated that the proposed method of finite element analysis was a good and efficient method predicts the oil leakage of rear axle housing, which can increased the knowledge of how oil leakage from the rear axle central gearbox can be controlled by design measures.


2008 ◽  
Vol 44-46 ◽  
pp. 765-772 ◽  
Author(s):  
Xi Hai Shen ◽  
Xiang Ling

The glass-to-metal seals are usually used in the solar thermal power (STP) and electronic devices. However, the requirement of mechanical properties in the STP is much higher than that of electronic devices, because the glass-to-metal joints used in the STP need to have anti-fatigue performance in adition to higher static tensile strength. Under the repeated fluctuating loads, damage and failures of glass-to-metal seals in the STP often lead to serious consequences. Therefore, analysis of damage evolution and fracture behavior of glass-to-metal diffusion welded joints was performed in this paper. Firstly, the finite element (FE) model of glass-to-metal welded joints was established in accordance with the STP welded structures. And damage simulation was carried out by the FE software ABAQUS. Also, the work illustrates the modeling of damage in terms of traction versus separation to simulate crack propagation and introduces the use of traction-separation law as a damage initiation and evolution criteria. The microgram of damage distribution in the glass side near the interface could be characterized by Scanning Electron Microscope (SEM), which was compared with predictions obtained by finite element method (FEM) analysis. As result, the damage criteria on the lap joints in conjunction with FM analysis were used to optimize the glass-to-metal diffusion welding technology. The above results provide the basis of design against damage and reliable estimation of glass-to-metal seals.


Author(s):  
Huang-Chi Tseng ◽  
Zong-Chun Wu ◽  
Chinghua Hung ◽  
Ming-Hu Lee

In this research, the sheet hydroforming process (SHF) was adopted to form a Ti/Al clad metal housing with complex shape. Nowadays, SHF has been widely accepted for the production of components characterized by high surface quality, precise dimensional accuracy together with high drawing ratio. For investigating the formability of the Ti/Al clad metal housing through SHF, the concept of virtual film were developed with explicit finite element method. First, the simulation model was verified by comparing the deformation of the blank obtained from experiments. Through finite element simulations, several significant process parameters such as holding force, tooling geometry, blank dimensions, single-stage (with pre-bulging effect) and multi-stages SHF were analyzed for improving formability of the Ti / Al clad metal housing during SHF.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


Sign in / Sign up

Export Citation Format

Share Document