Effects of Fiber Pre-Oxidation on Mechanical Properties and Microstructure of T700 Carbon Fiber Reinforced Mini C/SiC Composites

2017 ◽  
Vol 726 ◽  
pp. 137-142 ◽  
Author(s):  
Zhi Hua Chen ◽  
Si'an Chen ◽  
Jin Tai Wu ◽  
Hai Feng Hu ◽  
Yu Di Zhang

The reainforcement of T700 carbon fiber was oxidized at 400°C, as-received and treated carbon fiber reinforced mini Cf/SiC matrix composites were fabricated by precursor infiltration and pyrolysis (PIP) method. The mechanical properties of the composites were determined and compared. The results showed that with the time of oxidation increased, the flexural strength of composites decreased. The flexural modulus and tensile modulus were increased by the 87.8 GPa to 92.9 GPa and 131 GPa to 150 GPa. Without oxidation pretreatment, the composites represented maximum flexural strength of 649 MPa. For 1h oxidation, the composites reached the maximum tensile strength of 821 MPa. However, carbon fiber pre-oxidation for 2h, C/SiC composites mechanical properties appeared to reduce seriously.

2007 ◽  
Vol 334-335 ◽  
pp. 145-148 ◽  
Author(s):  
Dong Mei Zhu ◽  
Fa Luo ◽  
Hong Na Du ◽  
Wan Cheng Zhou

A series of carbon fiber reinforced C-SiC dual matrix composites (C/C-SiC composites) were developed through precursor infiltration of polycarbosilane (PCS) and pyrolysis (PIP), using porous C/C composites with different density from chemical vapor infiltration (CVI) as the preform. The density, mechanical properties, and microstructure of the composites were investigated and the effects of the preform density and the PCS concentration of the infiltration solution on the final density and the mechanical properties of the composites were discussed in detail. The results show that the final density of the C/C-SiC composites prepared at the infiltration concentration of 50% is the highest, indicating that 50% is the proper PCS concentration of the PCS/ Xylene solution to prepare the C/C-SiC composites. The final densities of C/C-SiC composites were closely related to the preform density and the highest final density corresponds to the highest original preform density. For the composites prepared using infiltration solution of 50% PCS, the C/C-SiC composite whose preform density is 1.23 g/cm3 possesses the best mechanical properties while that whose preform density is 1.49 g/cm3 the worst mechanical properties.


2012 ◽  
Vol 512-515 ◽  
pp. 798-803 ◽  
Author(s):  
Shu Qi Guo ◽  
Toshiyuki Nishimura ◽  
Yutaka Kagawa

PAN and Pitch short carbon fiber-reinforced SiC matrix composites were fabricated by using a melting infiltration technique. The microstructure of the composites was characterized by scanning electron microscopy. The flexural strength of the composites was measured at room and high temperatures. The thermal conducitivity of the composites were evaluated. Effects of fibers on mechanical properties and thermal conductivity were assessed. The experimental results showed that the silicification of fibers during siliconizing was prevented due to the presence of barrier layer on the surface of fiber. Also, flexural strength and thermal conductivity depended on fibers used and content of fibers.


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4592
Author(s):  
Chen Xiong ◽  
Tianhao Lan ◽  
Qiangsheng Li ◽  
Haodao Li ◽  
Wujian Long

This study investigates the feasibility of collaborative use of recycled carbon fiber reinforced polymer (RCFRP) fibers and recycled aggregate (RA) in concrete, which is called RCFRP fiber reinforced RA concrete (RFRAC). The mechanical properties of the composite were studied through experimental investigation, considering different RCFRP fiber contents (0%, 0.5%, 1.0%, and 1.5% by volume) and different RA replacement rates (0%, 10%, 20%, and 30% by volume). Specifically, ten different mixes were designed to explore the flowability and compressive and flexural strengths of the proposed composite. Experimental results indicated that the addition of RCFRP fibers and RA had a relatively small influence on the compressive strength of concrete (less than 5%). Moreover, the addition of RA slightly decreased the flexural strength of concrete, while the addition of RCFRP fibers could significantly improve the flexural performance. For example, the flexural strength of RA concrete with 1.5% RCFRP fiber addition increased by 32.7%. Considering the good flexural properties of the composite and its potential in reducing waste CFRP and construction solid waste, the proposed RFRAC is promising for use in civil concrete structures with high flexural performance requirements.


2020 ◽  
Vol 39 (7-8) ◽  
pp. 311-323
Author(s):  
Esma Avil ◽  
Ferhat Kadioglu ◽  
Cevdet Kaynak

The main objective of this study was to investigate contribution of the non-functionalized multi-walled carbon nanotubes on the vibration damping behavior of first neat epoxy resin and then unidirectional and bidirectional continuous carbon fiber reinforced epoxy matrix composites. Epoxy/carbon nanotubes nanocomposites were produced by ultrasonic solution mixing method, while the continuous carbon fiber reinforced composite laminates were obtained via resin-infusion technique. Vibration analysis data of the specimens were evaluated by half-power bandwidth method; and the mechanical properties of the specimens were determined with three-point bending flexural tests, including morphological analyses under scanning electron microscopy. It was generally concluded that when even only 0.1 wt% carbon nanotubes were incorporated into neat epoxy resin, they have contributed not only to the mechanical properties (flexural strength and modulus), but also to the vibration behavior (damping ratio) of the epoxy. When 0.1 or 0.5 wt% carbon nanotubes were incorporated into continuous carbon fiber reinforced epoxy matrix composites, although they have no additional contribution to the mechanical properties, their contribution in terms of damping ratio of the composites were significant.


2014 ◽  
Vol 488-489 ◽  
pp. 30-35 ◽  
Author(s):  
Cun Juan Xia ◽  
Ming Liang Wang ◽  
Hao Wei Wang ◽  
Cong Zhou

The interface between the reinforcement and the matrix is significant to metal matrix composites. The effect of aluminum (Al) content on interfacial microstructure and mechanical properties of TiO2coated carbon fiber reinforced magnesium matrix composites by squeeze casting technique have been studied (C/Mg). Mg-2wt%Al and AZ91D were used as alloy matrix. The obtained results indicate that the carbon fibers in both kinds of composites are well protected by TiO2coating, without any interfacial brittle carbide phase observed. The flexural strength of Cf-TiO2/AZ91D (1009MPa) composites is 26.5% lower than that of Cf-TiO2/Mg-2Al (1277MPa) composites. The lath-shaped precipitates of Mg17Al12in AZ91D composites lead to the mechanical properties decrease.


2010 ◽  
Vol 152-153 ◽  
pp. 829-833 ◽  
Author(s):  
Xin Ying Lv ◽  
Rong Guo Wang ◽  
Wen Bo Liu ◽  
Long Jiang

Bis-maleimide (BMI) resins are widely applied in carbon fiber reinforced polymer composites in aerospace fields, for their excellent thermal and mechanical properties. The effects of thermo-oxidative aging on mechanical properties of carbon fiber reinforced BMI composites were investigated by SEM with the combination of flexural strength test and inter-laminar shear strength (ILSS) test. The results indicated that the thermal-oxidative aging had some effects on mechanical properties of carbon fiber/BMI composites; however the testing temperature or service temperature had much more effects than aging time. With aging time increased, the flexural strength at 150 oC and the ILSS at 25 oC slightly increased, while the ILSS at 150 oC decreased gradually. Both test results of mechanical properties and fracture models of damaged flexural specimens by SEM indicated that the matrix resin in the composites showed some viscoelastic behaviors that resulted in the remarkable dependence of mechanical properties of the composites on temperature. Therefore, the carbon fiber reinforced BMI composites had lower flexural strength and ILSS at 150 oC than that at 25 oC.


2017 ◽  
Vol 49 (11) ◽  
pp. 1064-1068
Author(s):  
Li Ronghao ◽  
Li Keqiang ◽  
Tian Haiyong ◽  
Xue Jianmin ◽  
Liu Shaoquan

Sign in / Sign up

Export Citation Format

Share Document