Influence of Different Fillers in Polymer Matrix of Single Roving on the Tensile Properties

2017 ◽  
Vol 731 ◽  
pp. 86-91
Author(s):  
Tomáš Vlach ◽  
Lenka Laiblová ◽  
Petr Hájek

Technical textiles and composite materials in general becomes more and more popular for the reinforcing of concrete elements. These materials are very often combined with high performance fine grain concretes with big surface quality. High performance concretes developed rapidly in the last decade and therefore also composite materials must be developed hand in hand with concrete. One possibility is to further imrove basic material or roving itself, but this article is focused on improving of the polymer matrix. As a matrix in this presented article was used epoxy resin. The purpose of the experiment was to improve the tensile parameters of composite reinforcement by adding fillers into the matrix. Fillers improve interaction between individual fibers and thatks to that improve parameters of entire composite.

2013 ◽  
Vol 471 ◽  
pp. 335-340 ◽  
Author(s):  
A.M.T. Arifin ◽  
S. Abdullah ◽  
Rozli Zulkifli ◽  
D.A. Wahab

This paper presents the investigation of composite materials lamination using different materials in the structure of lamination. The main purpose of the study is to evaluate the behaviour of characteristics in composite materials subjected to difference of fatigue loading, leading to understand the criteria that influence the behaviour of composite lamination structure. Therefore, in this research, the orientation of lamination structure used is 00/900and the material selected for the study were chopped strand mat (csm) and woven roving fabric (wr) as a reinforcement and the matrix used were polyester and epoxy resin. The composite lamination structure was produced using hand lay-up technique. The fatigue condition experiment of composite materials in this research was carried under tension-tension loading. With difference in fatigue loading condition, the lifetime of composite structure will be different and the cracking phenomenon in the structure will also be different. It is suggested that, different number of lamination and amount of reinforcement and matrix, produce a variety of materials characteristic with respect to elasticity of material. An implication of the study in this research showed various behaviour of composite materials with different materials used and it showed a difference phenomenon in comparison to metalic materials.


2011 ◽  
Vol 391-392 ◽  
pp. 332-335
Author(s):  
Yong Peng Yu

Epoxy resin (EP) with excellent performance was widely used as electronic encapsulation materials, but the traditional EP can not meet require of nowadays electronic encapsulation materials in wet-heat resistance, flame retardant, insulation and other performance. So the current research progress of EP with wet-heat resistance and high-performance was summarized in the field of electronic encapsulation.


2020 ◽  
Vol 15 (1) ◽  
pp. 113-128
Author(s):  
Chouaib Aribi ◽  
Aissa Bouaissi ◽  
Brahim Safi ◽  
Mohammed Saidi

Abstract This paper presents an experimental investigation on the post-repair flexural response of mortars with and without damage. In order to improve the mechanical properties of the damaged mortars, which were subjected to different loads ranging between 40 % and 90 %, the mortars specimens were reinforced and repaired using two different composite materials, the first with only epoxy resin, while the second consisted of a mixture of epoxy resin and glass fiber. The results show a significant improvement in the stiffness damaged. Therefore, the reinforced specimens by a layer of resin on the lower side surface increased the bending strength by 58 %, when compared to those control samples. The reinforcement using composite resin-fiber of glass exhibited considerable increases in the safety of constructions. The SEM images of damaged samples with and without repair, revealed the impact of reinforced glass fibers-mortar on the matrix-mortar by improving theirs mechanical performances.


2014 ◽  
Vol 1054 ◽  
pp. 110-115 ◽  
Author(s):  
Lenka Laiblová ◽  
Tomáš Vlach ◽  
Alexandru Chira ◽  
Magdaléna Novotná ◽  
Ctislav Fiala ◽  
...  

In civil engineering, steel reinforced concrete is currently still the most widely used composite material. For broad spectrum of utilization is the most important combination of a high compressive and tensile strength [1]. The increasing demand for subtle concrete elements gave impetus to the development of the new materials for the reinforcement of concrete which are non-corrodible and thus do not need such a thick coating layer-technical textiles. These composite materials are known under the title Textile Reinforced Concrete – TRC. The current research reported the use of AR glass fibers reinforced material for HPC and comparison with other reinforced materials.


2012 ◽  
Vol 245 ◽  
pp. 138-143 ◽  
Author(s):  
Zdeněk Majer ◽  
Luboš Náhlík

Particulate composites with polymer matrix and solid fillers are one of important types of materials. Generally, these materials are usually used as construction materials, high-performance engineering materials or protective organic coatings. The main aim of a present paper is an estimation of the micro-crack behavior in the particulate composite with non-linear polymer matrix. The polymer matrix filled by magnesia-based mineral filler is investigated by means of the finite element method. A non-linear material behavior of the matrix was obtained from experiment as well as properties of mineral filler. Numerical model on the base of representative plane element (RPE) was developed. The results show that the presence of interphase between particle and matrix can improve fracture toughness of polymer particle composite through debonding process. The conclusions of this paper can contribute to a better understanding of the behavior of micro-crack in particulate composites with respect to interphase.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Paulo Nobre Balbis dos Reis ◽  
Ana Martins Amaro ◽  
Maria Augusta Neto

Polyamide creates high-performance composite materials, which are replacing the traditional epoxy composites in several applications. In this context, exposure to hostile environments is expected. On the other hand, due to the viscoelastic nature of the matrix, these composite materials are prone to stress relaxation. Therefore, the stress relaxation behaviour of glass/polyamide 6 composites was studied considering different fibre directions, as well as exposure to NaOH and HCl solutions. Stress relaxation tests on the bending mode were carried out, and the stress recorded during the loading time (7200 s). All tests were characterized by a stress decrease over time, but laminates with higher fibre angles were more prone to stress relaxation. However, exposure to hostile solutions promoted more significant decreases, where the highest stress relaxation was achieved for alkaline environments with values that were three times higher for laminates with fibres at 0° and around one and half times higher for 45° fibre alignments when compared with the control samples. Finally, the Kohlrausch–Williams–Watts (KWW) model showed that it can be used to predict stress relaxation time, due to the accuracy that was obtained between the experimental and theoretical results.


Sign in / Sign up

Export Citation Format

Share Document