Research Progress of Heat Hv Insulation Resistance of Macromolecular Composite Materials

2011 ◽  
Vol 391-392 ◽  
pp. 332-335
Author(s):  
Yong Peng Yu

Epoxy resin (EP) with excellent performance was widely used as electronic encapsulation materials, but the traditional EP can not meet require of nowadays electronic encapsulation materials in wet-heat resistance, flame retardant, insulation and other performance. So the current research progress of EP with wet-heat resistance and high-performance was summarized in the field of electronic encapsulation.

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2145 ◽  
Author(s):  
Quanyi Liu ◽  
Donghui Wang ◽  
Zekun Li ◽  
Zhifa Li ◽  
Xiaoliang Peng ◽  
...  

With the increasing emphasis on environmental protection, the development of flame retardants for epoxy resin (EP) has tended to be non-toxic, efficient, multifunctional and systematic. Currently reported flame retardants have been capable of providing flame retardancy, heat resistance and thermal stability to EP. However, many aspects still need to be further improved. This paper reviews the development of EPs in halogen-free flame retardants, focusing on phosphorus flame retardants, carbon-based materials, silicon flame retardants, inorganic nanofillers, and metal-containing compounds. These flame retardants can be used on their own or in combination to achieve the desired results. The effects of these flame retardants on the thermal stability and flame retardancy of EPs were discussed. Despite the great progress on flame retardants for EP in recent years, further improvement of EP is needed to obtain numerous eco-friendly high-performance materials.


2021 ◽  
pp. 131173
Author(s):  
Tian-Yu Gao ◽  
Fen-Dou Wang ◽  
Yu Xu ◽  
Chun-Xiang Wei ◽  
San-E Zhu ◽  
...  

2011 ◽  
Vol 308-310 ◽  
pp. 804-807
Author(s):  
Jian Jiao ◽  
Liang Zou ◽  
Pan Bo Liu ◽  
Guang Li Wu

Silica/epoxy resin hybrid materials are prepared with tetraethylorthosilicate (Si(OC2H5)4, TEOS) and γ-aminoproplytriethyoxysiliane (H2N(CH2)3Si(OC2H5)3, APTES) as the silica sources, epoxy resin as the polymer matrix, by the means of in-suit sol-gel method. The dosages of TEOS and APTES in preparation of hybrid materials, and the sol-gel temperature for silica resources are discussed to make sure of the influence of the structure and properties on hybrid materials. The dispersion of Silica in the epoxy resin are examined by transmission electron microscopy (TEM).The image of fracture surfaces of hybrid materials are examined by scanning electron microscopy (SEM). The glass transmission temperatures (Tg) are tested by differential scanning calorimeter (DSC) to characterize the heat resistance of hybrid materials. The optimum mechanical performance and heat resistance for silica/epoxy resin hybrid materials are achieved with 3wt% TEOS and APTES 2wt% employed in this materials when sol-gel temperature is 60°C. In general, the mechanical and thermal properties of the hybrid materials were improved greatly as compared with the pure epoxy resin.


2017 ◽  
Vol 30 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Rasool Kheyrabadi ◽  
Hossein Rahmani ◽  
S Heydar Mahmoudi Najafi

Flame-retardant halogen-free epoxy resin, containing phosphorus and nitrogen atoms in the main chain, was synthesized through the curing of tris(3-(bis(oxiran-2-ylmethyl)amino)phenyl)phosphine oxide (HGE, hexaglycidyl epoxy monomer), starting from tris(3-aminophenyl) phosphine oxide (TAPO) and epichlorohydrin. The molecular structure of HGE with molecular weight 660 was confirmed using Fourier transform infrared, nuclear magnetic resonance, and liquid chromatography–mass spectrometry techniques. Epoxy equivalent weight determined by titration method was 120. The thermal curing behavior of the HGE/TAPO was investigated by differential scanning calorimetry. An intense exotherm due to curing reaction was observed in the temperature range from 123°C to 215°C. The HGE cured with TAPO, 4,4′-diaminodiphenylsulfone (DDS), and 1,5-diaminonaphthalene (DAN) and the thermal behaviors were studied by thermogravimetric analysis. The flame retardancy properties of the HGE/TAPO, DDS, and DAN were evaluated by vertical burning test (UL-94 V). The high performance cured epoxy resins showed high thermal stability and UL-94 V-0 flame retardancy rating.


2017 ◽  
Vol 731 ◽  
pp. 86-91
Author(s):  
Tomáš Vlach ◽  
Lenka Laiblová ◽  
Petr Hájek

Technical textiles and composite materials in general becomes more and more popular for the reinforcing of concrete elements. These materials are very often combined with high performance fine grain concretes with big surface quality. High performance concretes developed rapidly in the last decade and therefore also composite materials must be developed hand in hand with concrete. One possibility is to further imrove basic material or roving itself, but this article is focused on improving of the polymer matrix. As a matrix in this presented article was used epoxy resin. The purpose of the experiment was to improve the tensile parameters of composite reinforcement by adding fillers into the matrix. Fillers improve interaction between individual fibers and thatks to that improve parameters of entire composite.


2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940004
Author(s):  
Jieng-Chiang Chen ◽  
Bo-Yan Huang

The waterproof and flame-retardant properties of corrugated paper (CP) reinforced epoxy resin sandwich composites are discussed. Two composites, a CP-reinforced epoxy composite (CP/E composite) and a CP-reinforced flame-retardant epoxy composite (CP/FRE composite), were developed in this study. A dipping bath was developed for impregnating the paper with epoxy and a flame-retardant epoxy solution to make the CP/P and CP/FRE composite panels. A room-temperature-cured epoxy resin was blended with various contents (10%, 20%, and 30%) of phosphorus-based flame-retardant compounds and then was used as a matrix to make CP/FRE-10, CP/FRE-20, and CP/FRE-30 composite materials. Water absorption tests of these composites were used to estimate the waterproof properties. In addition, vertical and horizontal burning tests were used to evaluate the flame-retardant properties of the composites.


Sign in / Sign up

Export Citation Format

Share Document