Effect of Fibers Length and Fibers Content on the Splitting Tensile Strength of Coconut Fibers Reinforced Concrete Composites

2017 ◽  
Vol 748 ◽  
pp. 311-315 ◽  
Author(s):  
Riana H. Lumingkewas ◽  
Abrar Husen ◽  
Rendy Andrianus

Tests on the Indonesian coconut fiber showed that, compared to the results of previous studies, tensile strength and tension failure improved after the fiber was washed with water and dried. This study aims to obtain the effects of fiber length and fiber content on splitting tensile strength behavior of the concrete composite reinforced with coconut fiber. Experimental observations were carried out on the splitting tensile strength of coconut fibers as determined by the fiber content (1, 2, 3, and 4 % by a mass ratio of fiber per cement) and the length of the fibers (5, 20, 40 mm) in the concrete. The results show that a coconut fiber length of 5 mm and a fiber content of 3 % in fiber concrete composite gives the composite 1.28 times higher splitting tensile strength than plain concrete. The density of the fiber concrete composite decreases with the addition of coconut fiber content.

2013 ◽  
Vol 742 ◽  
pp. 92-97 ◽  
Author(s):  
Riana H. Lumingkewas ◽  
Gilles Ausias ◽  
Thibaut Lecompte ◽  
Arnaud Perrot ◽  
Irwan Katili ◽  
...  

The coconut fiber presents higher ductile properties than other natural fibers. In previous studies, it demonstrated than Indonesian coconut fibers presents an improved tensile strength and failure strain after washed with water and dried. The coconut fibers have the potential to reinforce material for construction, especially in earthquake areas such as tropical countries. The purpose of this research is to assess the benefit brought by coconut fibers content on the tensile behavior of mortar composite. Splitting tensile strengths were measured and microstructure observed using scanning electron microscopy (SEM). The influence of fiber content (expressed by a mass ratio fiber/cement) is investigated. The results show that a fiber content of 5% allows a 10 times higher deflection and presents a 1.5 times higher tensile strength than mortar without fiber. Further studies will focus on the bond strength between the fiber and the cement mortar matrix.


2018 ◽  
Vol 162 ◽  
pp. 02003 ◽  
Author(s):  
Shakir Salih ◽  
Qais Frayyeh ◽  
Manolia Ali

Slurry infiltrated fiber concrete (SIFCON) is one of the recently developed construction material. SIFCON could be considered as a special type of fiber concrete with high fiber content. The matrix of SIFCON consists of flowing cement mortar or cement slurry. SIFCON has a very good potential for application in area where resistance to impact and high ductility are needed especially in designing the seismic retrofit, in the structures under impact and explosive effects and repair of structural reinforced concrete element. The main objective of this paper is to determine the effect of steel fiber content and silica fume (SF) cement replacement on the mechanical properties of SIFCON concrete. The percentage of SF replacement was 10% by weight of cement in SIFCON slurry, and three different volume fractions of hooked ended steel fiber (6, 8.5, and 11) % were used. The tested properties of SIFCON were compressive strength and splitting tensile strength which were carried out on standard size of cubes and cylinders respectively at the age of 7and 28 days. It was observed that the mechanical properties of SIFCON were affected in a positive manner by using silica fume as a partial replacement of cement and by adding steel fiber reinforcement in different percentages. The compressive and splitting tensile strength up to 83.7 MPa and 17.3MPa, respectively were obtained at the age of 28 days.


2013 ◽  
Vol 651 ◽  
pp. 269-273 ◽  
Author(s):  
Riana H. Lumingkewas ◽  
Heru Purnomo ◽  
Gilles Ausias ◽  
Dedi Priadi ◽  
Thibaut Lecompte ◽  
...  

Natural fibers such as coconut fibers are numerous in Indonesia. The tensile strength of coconut fibers produced in this country is among the highest of natural fibers ones. This paper is to determine the tensile strength of coconut fibers with or without special treatment (water washing dry) and assessment the ability of coconut fiber for reinforcement in mortar composites. Experimental observations on coconut fibers and mortars carried out. There were tensile tests and scanning electron microscopy (SEM) providing microstructural properties of coconut fibers. The results showed that the coconut fibers treatment increases tensile strength and provides higher failure strain values. It showed that coconut fibers largely improved tensile strength behavior of mortar composites. To a conclusion, the coconut fibers are able to be used as reinforcement for ductile mortar composites.


2018 ◽  
Vol 777 ◽  
pp. 471-475 ◽  
Author(s):  
Riana Herlina Lumingkewas ◽  
Rahmat Setyadi ◽  
Rachmi Yanita ◽  
Syahrial Akbar ◽  
Akhmad Herman Yuwono

This study aims to assess the benefit brought by fibers content, and fiber length on the splitting tensile behavior of sugar palm fibers reinforced concrete composites. Three fiber lengths of 5, 20, and 40 mm in four-fiber content, namely 1%, 2%, 3%, and 4% by a mass ratio fiber per cement, were utilized in this investigation. The values of tensile strength and density are reported for ages up to 28 days. The result observes that the addition of sugar palm fibers increased the tensile strength of concrete and the density of sugar palm fiber in concrete decreases with the addition of sugar palm fiber. The mix of 1% fiber content and 20 mm length fiber gave higher tensile strength compared to other mixes.


2012 ◽  
Vol 450-451 ◽  
pp. 168-173
Author(s):  
Ning Hui Liang ◽  
Xin Rong Liu ◽  
Ji Sun

Through splitting tensile tests on 30 plain concrete and polypropylene fiber concrete specimens with the dimensions of 100mm × 100mm × 100mm , studied the influence of the different scales of polypropylene fiber and hybrid fiber on concrete splitting tensile strength and splitting tensile deformation. The results showed that: the splitting tensile strength of concrete for single-doped fine fiber had increased 7%~31%,for single-doped coarse fiber had increased 7%~39%,and mixing-doped coarse-fine fiber had increased 2%~50%. Doped-fiber can improve the concrete splitting tensile toughness, it's enhancement sort: mixing-doped coarse-fine fiber concrete > single-doped coarse fiber concrete > single-doped fine fiber concrete> plain concrete


2018 ◽  
Vol 162 ◽  
pp. 02001
Author(s):  
Wasan Khalil ◽  
Hisham Ahmed ◽  
Zainab Hussein

In this investigation, sustainable High Performance Lightweight Aggregate Concrete (HPLWAC) containing artificial aggregate as coarse lightweight aggregate (LWA) and reinforced with mono fiber, double and triple hybrid fibers in different types and aspect ratios were produced. High performance artificial lightweight aggregate concrete mix with compressive strength of 47 MPa, oven dry density of 1828 kg/m3 at 28 days was prepared. The Fibers used included, macro hooked steel fiber with aspect ratio of 60 (type S1), macro crimped plastic fiber (P) with aspect ratio of 63, micro steel fiber with aspect ratio of 65 (type S), and micro polypropylene fiber (PP) with aspect ratio of 667. Four HPLWAC mixes were prepared including, one plain concrete mix (without fiber), one mono fiber reinforced concrete mixes (reinforced with plastic fiber with 0.75% volume fraction), one double hybrid fiber reinforced concrete mixes (0.5% plastic fiber + 0.25% steel fiber type S), and a mix with triple hybrid fiber (0.25% steel fiber type S1+ 0.25% polypropylene fiber + 0.25% steel fiber type S). Fresh (workability and fresh density) and hardened concrete properties (oven dry density, compressive strength, ultrasonic pulse velocity, splitting tensile strength, flexural strength, static modules of elasticity, thermal conductively, and water absorption) were studied. Generally, mono and hybrid (double and triple) fiber reinforced HPLWAC specimens give a significant increase in splitting tensile strength and flexural strength compared with plain HPLWAC specimens. The percentage increases in splitting tensile strength for specimens with mono plastic fiber are, 20.8%, 31.9%, 36.4% and 41%, while the percentage increases in flexure strength are 19.5%, 37%, 33.9% and 34.2% at 7, 28, 60, 90 days age respectively relative to the plain concrete. The maximum splitting tensile and flexure strengths were recorded for triple hybrid fiber reinforced HPLWAC specimens. The percentage increases in splitting tensile strength for triple hybrid fiber reinforced specimens are 19.5%, 37%, 33.9% and 34.2%, while the percentage increases in flexure strength are 50.5%, 62.4. %, 66.8% and 62.2% at 7, 28, 60 and 90 days age respectively relative to the plain concrete specimens.


2014 ◽  
Vol 27 (2) ◽  
pp. 77-82 ◽  
Author(s):  
H Ahmad ◽  
MA Islam ◽  
MF Uddin

Chopped jute fiber-epoxy composites with varying fiber length (2-12 mm) and mass fraction (0.05-0.35) had been prepared by a heat press unit. The cross-linked product was characterized in terms of specific gravity, thermal conductivity, tensile strength, Young modulus and elongation at break. The transverse thermal conductivities for randomly oriented fibers in the composite were investigated by Lees and Charlton’s method. The tensile strength, Young modulus and elongation at break were investigated by a Universal Tensile Tester. With an increase in the fiber content (irrespective of the fiber length), the thermal conductivity of the composite decreases; the decreasing rate being highest for the fiber length of 2 mm followed by that for the fiber length of 6 and 12 mm. The decreasing rate of the thermal conductivity of the jute-epoxy composite is comparatively higher to that reported in literature for acrylic polymer hemp fiber composite. The tensile strength also decreases with the increase of the fiber content in the composite. The fiber length does not show to have significant effect on the tensile strength of the composite; the variation in strength being masked within experimental error. The Young modulus increases with the increase of fiber content within elastic limit; showing the highest values for the fiber length of 6 mm followed by those for the fiber length of 2 mm and 12 mm. The elongation at break shows slightly increasing trend up to 15% fiber content, but beyond that it decreases drastically. The specific gravity decreases with the increase in the fiber content and thus the recalculated specific tensile strength is found to keep at a stable level of 36MPa up to the fiber content of 20%, and beyond that the specific tensile strength decreases with the increase in the fiber content. It is concluded that jute fiber-epoxy composite could be used as a good heat-insulating material. Further investigation is recommended on the improvement of the thermal insulation keeping the mechanical properties unchanged or even improved. The TGA study is also required to ascertain the field of application of the material. DOI: http://dx.doi.org/10.3329/jce.v27i2.17807 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 2, December 2012: 77-82


2014 ◽  
Vol 919-921 ◽  
pp. 1930-1933
Author(s):  
Rui Zhen Yan ◽  
Wei Hua Ge ◽  
Hong Xiu Du

In order to discuss the effect of different cooling methods, dosage and length of PP fiber on the splitting tensile strength of PPHSC after high temperatures, experiments were carried out on the splitting tensile strength of C60 HSC mixed with PP fibers with different dosage ( 1.0kg/m3, 1.5 kg/m3, 2.0kg/m3, 2.5 kg/m3) and length (8mm,19mm) before and after high temperatures. The test results indicated that the relative residual splitting tensile strength of PPHSC totally declined with the increase of temperature, meanwhile, the strength value of HSC cooled in air was higher than that cooled in water on the whole. The addition of PP fiber with the length of 8mm contributed to the enhancement of the relative residual splitting tensile strength of HSC after high temperatures, whereas, only the HSC mixed with 1.0 kg/m3 PP fibers had a greater strength than plain concrete when the length of fiber was 19mm. After exposure to high temperatures, the relative residual splitting tensile strength of HSC with PP fibers 8mm in length was completely higher than those with 19mm.


2021 ◽  
Vol 11 (17) ◽  
pp. 7926
Author(s):  
Qian Zhang ◽  
Wenqing Zhang ◽  
Yu Fang ◽  
Yongjie Xu ◽  
Xianwen Huang

In order to solve the problem of highly brittle shaft lining under dynamic loading, a combination of hybrid fiber concrete mixed with steel and polypropylene fiber is proposed to make shaft lining. C60, the concrete commonly used in shaft lining, was selected as the reference group. The static mechanical properties, dynamic mechanical properties, and crack failure characteristics of the hybrid fiber concrete were experimentally studied. The test results showed that compared to the reference group concrete, the compressive strength of the hybrid fiber-reinforced concrete did not significantly increase, but the splitting tensile strength increased by 60.4%. The split Hopkinson compression bar results showed that the optimal group peak stress and peak strain of the hybrid fiber concrete increased by 58.2% and 79.2%, respectively, and the dynamic toughness increased by 68.1%. The strain distribution before visible cracks was analyzed by the DIC technology. The results showed that the strain dispersion phenomenon of the fiber-reinforced concrete specimen was stronger than that of the reference group concrete. By comparing the crack failure forms of the specimens, it was found that compared to the reference group concrete, the fiber-reinforced concrete specimens showed the characteristics of continuous and slow ductile failure. The above results suggest that HFRC has significantly high dynamic splitting tensile strength and compressive deformation capacity, as well as a certain anti-disturbance effect. It is an excellent construction material for deep mines under complex working conditions.


2020 ◽  
Vol 831 ◽  
pp. 110-114
Author(s):  
Riana Herlina Lumingkewas ◽  
Sigit Pranowo Hadiwardoyo ◽  
Abrar Husen ◽  
Saepudin

The development of nanotechnology continues to grow. The use of nanocement in concrete is expected to reduce the number of pores and improve hydration in concrete and provide more strength to the concrete. The use of natural fibers, in this case, coconut fiber can prevent cracks in concrete and make fiber concrete more ductile than ordinary concrete. The effect of using nanocement on coconut fiber concrete on the strength of the concrete to be studied. Methodology to complete the research objectives, use nanocement used in concrete, which has added coconut fiber. Tests reviewed the value of slump and specific gravity. Then, testing the compressive strength at 7, 24, 28 days. The results obtained were an increase of 48.19% in the strength of concrete. Further research needs to review on mixing nanocement with other natural fibers.


Sign in / Sign up

Export Citation Format

Share Document