Influence of Texture and Environmental Effects on Fatigue Behavior of Ti-6Al-4V Alloy

2017 ◽  
Vol 754 ◽  
pp. 39-42 ◽  
Author(s):  
Sergio Baragetti ◽  
Nedunchezhian Srinivasan ◽  
Ravi Kumar

Ti-6Al-4V alloy in solutionized and aged condition was subjected to axial fatigue testing in air and corrosive environments respectively. Severity of the methanol damage as evidenced through fractographic studies, corroborates loss in fatigue strength of samples tested in methanol environment in contrast to samples tested in air. Samples subjected to fatigue loading in NaCl environment revealed extensive secondary cracks along alpha grain boundaries.

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhihong Xiong ◽  
Engao Peng ◽  
Lianghua Zeng ◽  
Qirong Xu

Some components made of 316L stainless steel in nuclear reactors are connected by welding, and these are under giga-cycle fatigue loading. Therefore, the giga-cycle fatigue behavior of 316L weldments, which are fabricated by Laser Beam Welding (LBW) and Gas Tungsten Arc Welding (GTAW), were investigated using an ultrasonic fatigue testing system. The results indicate that the fatigue strength of LBW-made weldments is almost the same as that of GTAW-made weldments even though the microstructure and mechanical properties of the weldments are different. For the LBW-made specimens, the LBW-induced internal pores with a diameter range of about 89–270 μm were observed in the fracture surface. However, an obvious decrease in fatigue life was not observed in such cases. For the GTAW-made specimens, the quality requirement of the weld seam has to be more strict to prevent fatigue strength from decreasing. The fatigue failure mode of the GTAW-made specimens is the same as that of LBW-made specimens in the high-cycle fatigue regime but different in the giga-cycle fatigue regime.


2020 ◽  
Author(s):  
Bradley Scott Henderson

The meniscus is a wedge-shaped fibrocartilaginous tissue located between the femur and tibia that helps stabilize the knee and protect the underlying cartilage. There are 2.5 million reported knee injuries each year, making it the most injured joint in the human body. Nearly twenty percent of these injuries are due to a torn meniscus, leading to over half a million meniscus surgeries performed in the United States annually. Therefore, it is critical to understand the failure modes of meniscus tissue to prevent these debilitating injuries. A failure mode that accounts for one-third of all meniscus injuries is repeated exposure to low-magnitude tensile loads, known as fatigue. One approach to gain physical insight into fatigue mechanisms is through cyclic tensile experiments performed in laboratories. An alternative approach is to use constitutive mathematical models that predict and describe the material's behavior. These models can avoid the expense and time required for experimental fatigue studies, but they also must be calibrated and validated using experimental data. The aim of this study is to validate a constitutive model to predict human meniscus' observed fatigue behavior in force-controlled loading. Three variations of constitutive models were applied to test each model's ability to model fatigue induced creep. These models included a viscoelastic damage model, a continuum damage mechanics model, and a viscoelastic model. Using a custom program, each models' parameters were fit to stretch-time plots from previously performed fatigue experiments of cadaveric human meniscus. The quality of fit for each model was then measured. The results of this study show that a viscoelastic damage formulation can effectively fit force-controlled fatigue behavior and, on average, performed the best of the three models presented. On average, the resulting NRMSE values for stretch at all creep stages were 0.22%, 2.03%, and 0.45% for the visco-damage, damage-only, and visco-only models, respectively. The requirement of including both viscoelasticity and damage to model all three creep stages indicates that viscoelasticity may be the driving factor for damage accumulation in fatigue loading. Further, the relatively low damage values, ranging from 0.05 to 0.2, right before exponential increases in stretch, indicate that failure may occur from fatigue loading without a considerable accumulation of damage. The validation results showed that the model could not completely represent pull to failure experiments when using material parameters that curve fit fatigue experiments. Still, they indicated that the combination of discontinuous CDM and viscoelasticity shows potential to model both fatigue and static loadings using a single formulation. To our knowledge, this is the first study to model force-controlled fatigue induced creep in the meniscus or any other soft tissue. This study's results can be utilized to further model force-controlled fatigue to predict and prevent meniscus tissue injuries.


2010 ◽  
Vol 146-147 ◽  
pp. 926-936 ◽  
Author(s):  
How Ji Chen ◽  
Te Hung Liu ◽  
Chao Wei Tang

The present study experimentally investigated the pre-failure and post-fatigue behavior of reinforced concrete (RC) beams constructed with lightweight aggregate concrete (LWAC) in comparison with that constructed of normal weight concrete (NWC) of the same compressive strength (40 MPa). A total of twelve RC beams were tested under different fatigue loadings. Based on the experimental observations, the midspan total deflection measured in the fatigue testing consisted of the elastic and plastic components. The mechanismof the two deflection components developed with load cycles was different. The experimental results showed that the fatigue resistance of LWAC beams was better than that of NWC beams for the same fatigue loading levels. It was reflected in both the lower evolution of fatigue damage and the smaller growth of midspan residual deflection. After 2 million cycles, an average increase in residual load capacity of about 8% was found in the NWC beams, while that in the LWA beams remained virtually unchanged.


2020 ◽  
Vol 54 (27) ◽  
pp. 4215-4230
Author(s):  
Marc-Claudel Deluy ◽  
Mohamed Khay ◽  
Anh Dung Ngo ◽  
Martine Dubé ◽  
Rajamohan Ganesan

The objective of this work is to investigate the effects of environmental conditions on the axial fatigue behavior of a carbon/epoxy plain-weave laminate with an embedded flaw subjected to a partially reversed cyclic load (stress ratio R = −0.1) in tension–compression. This specific material is more commonly used in aerospace engineering for the manufacturing of aircraft structural parts, which are directly exposed to various environmental conditions during service. Specific environmental and loading conditions that are appropriate to simulate real-life conditions are considered to observe and collect information about the material's behavior. For the investigation, dry and wet coupons were submitted to room temperature, 82 and 121 ℃ under loading frequencies of 7 and 15 Hz. A maximum allowable strain increase criterion is used to monitor the flaw growth threshold or delamination onset, during fatigue testing. The ultrasonic imaging (C-scan) technique is used to verify and confirm the delamination onset. Results show that the delamination onset strain increase criterion, along with fatigue life, generally decreased as the operating temperature and humidity were increased and that frequency had little effect on the delamination onset fatigue life. The S– N curves obtained from the tension–compression fatigue data were then compared to those of a previous work carried out in tension–tension fatigue loading. Results show a clear degradation in the delamination onset fatigue life of the coupons tested under tension–tension cyclic loading when the minimum tensile component of the cyclic load was replaced with a compressive load of the same magnitude.


2019 ◽  
Vol 40 (8) ◽  
pp. 880-887 ◽  
Author(s):  
Jeffrey E. Bischoff ◽  
Mehul A. Dharia ◽  
Justin S. Hertzler ◽  
Oliver N. Schipper

Background: Highly crosslinked polyethylene (HXLPE) was developed for its superior wear properties in comparison to conventional polyethylene (CPE). Concern over fatigue resistance has prevented widespread adoption of HXLPE for use in total ankle arthroplasty (TAA). The aim of this study was to determine whether HXLPE has sufficient fatigue strength for total ankle arthroplasty under simulated physiologically relevant motion profiles and loading in the ankle. Methods: Physiologic load and motion profiles representative of walking gait were incorporated into a computational model of a semiconstrained, fixed-bearing TAA to determine the loading state with highest stresses in the HXLPE bearing. Subsequent fatigue testing to 10 million cycles (Mc) at 5600 N was performed to assess bearing strength. Results: Peak stresses in the bearing were predicted at peak axial load and peak dorsiflexion during gait, occurring near heel off. All samples withstood 10 Mc of fatigue loading at that orientation without polyethylene bearing fracture. Conclusion: HXLPE had sufficient fatigue strength to withstand 10 Mc of loading at more than 5 times body weight at the point of peak stresses during simulated gait in total ankle arthroplasty. Clinical Relevance: HXLPE may be mechanically strong enough to withstand the in vivo demands of the ankle. Improvements in wear afforded by HXLPE can be obtained without compromising sufficient polyethylene strength properties in total ankle arthroplasty.


Author(s):  
Sung R. Choi ◽  
Jonathan A. Salem ◽  
John P. Gyekenyesi

The solution of fatigue strength as a function of preloading in dynamic fatigue testing was obtained analytically and numerically. The effect of preloading on dynamic fatigue strength decreases with increasing fatigue parameter (n), and for n ≥ 20 the effect is negligible up to a preloading of 90 %. The solution was verified by dynamic fatigue experiments conducted with soda-lime glass and alumina specimens in room-temperature distilled water. This result showed that one can apply a preloading corresponding up to 90 % of fatigue strength for most glass and ceramic materials, resulting in a dramatic saving of testing time in dynamic fatigue testing. The key feature that makes this technique feasible is that most of the slow crack growth under dynamic fatigue loading occurs close to failure time where a dynamic fatigue strength is defined.


2020 ◽  
pp. 219256822091912
Author(s):  
Lukas Weiser ◽  
Gerd Huber ◽  
Kay Sellenschloh ◽  
Klaus Püschel ◽  
Michael M. Morlock ◽  
...  

Study Design: Biomechanical study. Objectives: Failure of pedicle screws is a major problem in spinal surgery not only postoperatively, but also intraoperatively. The aim of this study was to evaluate whether cement augmentation may restore mounting of initially loosened pedicle screws. Methods: A total of 14 osteoporotic or osteopenic human cadaveric vertebral bodies (L2)—according to quantitative computed tomography (QCT)—were instrumented on both sides by conventional pedicle screws and cement augmented on 1 side. In vitro fatigue loading (cranial-caudal sinusoidal, 0.5 Hz) with increasing peak force (100 N + 0.1 N/cycles) was applied until a screw head displacement of 5.4 mm (∼20°) was reached. After loosening, the nonaugmented screw was rescue augmented, and fatigue testing was repeated. Results: The fatigue load reached 207.3 N for the nonaugmented screws and was significantly ( P = .009) exceeded because of initial cement augmentation (300.6 N). The rescue augmentation after screw loosening showed a fatigue load of 370.1 N which was significantly higher ( P < .001) compared with the nonaugmented screws. The impact of bone density on fatigue strength decreased from the nonaugmented to the augmented to the rescue-augmented screws and shows the greatest effect of cement augmentation on fatigue strength at low bone density. Conclusions: Rescue augmentation leads to similar or higher fatigue strengths compared with those of the initially augmented screws. Therefore, the cement augmentation of initially loosened pedicle screws is a promising option to restore adequate screw stability.


Author(s):  
Fraser McMaster ◽  
Hugh Thompson ◽  
Michelle Zhang ◽  
David Walters ◽  
Jonathan Bowman

An examination of the corrosion-fatigue behavior of production quality welds in X65-type pipes was performed. Due to the low cycle operational nature of the production flowline system, the fatigue test frequency was substantially lower (0.01Hz vs. 0.33Hz) than typically utilized during corrosion-fatigue testing. Also the tests were performed at higher stress ranges than previous sour service fatigue tests, which to date have targeted riser fatigue loading regimes. Stress-life (S-N) samples were removed from segments of pipe with outside diameters of 10.75 inch (wall thickness of 1.30 inch) and 9.625 inch (wall thickness of 1.26 inch) containing fully inspected, production-quality circumferential welds. Environments examined included laboratory air conditions as well as deoxygenated brine supplemented by a gas mix of H2S and N2. For all environmental tests performed, the dissolved oxygen levels were maintained at less than 10 ppb during all testing. The measured fatigue life decrease in the curved pipe segments was in the range of 8–110 times due to the combined effect of the material and fluid property variables examined. The results of this work clearly illustrated the impact of sour-service corrosion fatigue, in welded carbon steel pipes, to the multitude of variables involved. Nevertheless, the foregoing experimental work clearly demonstrated the importance of performing environmental relevant testing when considering material and process selection for offshore applications.


1997 ◽  
Vol 119 (3) ◽  
pp. 493-499 ◽  
Author(s):  
S. R. Choi ◽  
J. P. Gyekenyesi

The solution of fatigue strength as a function of preloading in dynamic fatigue (constant stress-rate) testing was obtained analytically and numerically. The effect of preloading on dynamic fatigue strength decreases with increasing fatigue parameter (n), and for n ≥ 20 the effect is negligible up to a preloading of 90 percent. The solution was verified by dynamic fatigue experiments conducted with soda-lime glass and alumina specimens in room-temperature distilled water. This result showed that one can apply a preloading corresponding up to 90 percent of fatigue strength for most glass and ceramic materials, resulting in a dramatic saving of testing time in dynamic fatigue testing. The key feature that makes this technique feasible is that most of the slow crack growth under dynamic fatigue loading occurs close to failure time where the dynamic fatigue strength is defined.


2018 ◽  
Vol 25 (4) ◽  
pp. 661-678
Author(s):  
Ata Hojatkashani ◽  
Mohammad Zaman Kabir

Abstract Numerous experimental studies have proven the efficiency of externally bonded fiber-reinforced polymer (FRP) systems on structural concrete elements, such as reinforced concrete (RC) beams. The current paper presents an analytical formulation of mechanical constants based on the results of experimental data, which were acquired from fatigue testing of intact and CFRP-retrofitted RC beams. A total of six scaled RC beams were prepared for the test, three of which were strengthened with carbon fiber-reinforced polymers (CFRPs). A specific finite element model coupled with experimental results from the proposed RC beams made it possible to compare the theoretical and experimental fatigue behavior of RC beams with and without composite reinforcement. The developed numerical model was then extended to evaluate a higher number of fatigue load cycles, as recommended by bridge codes. This was carried out to monitor the performance of CFRP-retrofitted RC beams in terms of flexural stiffness deterioration and damage propagation. The relationships presented in this paper were calibrated to the tested specimens. Moreover, they were useful for the design of RC and CFRP-retrofitted RC beams and for predicting fatigue performance, including the damage behavior of constituent materials.


Sign in / Sign up

Export Citation Format

Share Document