Sour Service Corrosion Fatigue Testing of Flowline Welds

Author(s):  
Fraser McMaster ◽  
Hugh Thompson ◽  
Michelle Zhang ◽  
David Walters ◽  
Jonathan Bowman

An examination of the corrosion-fatigue behavior of production quality welds in X65-type pipes was performed. Due to the low cycle operational nature of the production flowline system, the fatigue test frequency was substantially lower (0.01Hz vs. 0.33Hz) than typically utilized during corrosion-fatigue testing. Also the tests were performed at higher stress ranges than previous sour service fatigue tests, which to date have targeted riser fatigue loading regimes. Stress-life (S-N) samples were removed from segments of pipe with outside diameters of 10.75 inch (wall thickness of 1.30 inch) and 9.625 inch (wall thickness of 1.26 inch) containing fully inspected, production-quality circumferential welds. Environments examined included laboratory air conditions as well as deoxygenated brine supplemented by a gas mix of H2S and N2. For all environmental tests performed, the dissolved oxygen levels were maintained at less than 10 ppb during all testing. The measured fatigue life decrease in the curved pipe segments was in the range of 8–110 times due to the combined effect of the material and fluid property variables examined. The results of this work clearly illustrated the impact of sour-service corrosion fatigue, in welded carbon steel pipes, to the multitude of variables involved. Nevertheless, the foregoing experimental work clearly demonstrated the importance of performing environmental relevant testing when considering material and process selection for offshore applications.

2020 ◽  
Author(s):  
Bradley Scott Henderson

The meniscus is a wedge-shaped fibrocartilaginous tissue located between the femur and tibia that helps stabilize the knee and protect the underlying cartilage. There are 2.5 million reported knee injuries each year, making it the most injured joint in the human body. Nearly twenty percent of these injuries are due to a torn meniscus, leading to over half a million meniscus surgeries performed in the United States annually. Therefore, it is critical to understand the failure modes of meniscus tissue to prevent these debilitating injuries. A failure mode that accounts for one-third of all meniscus injuries is repeated exposure to low-magnitude tensile loads, known as fatigue. One approach to gain physical insight into fatigue mechanisms is through cyclic tensile experiments performed in laboratories. An alternative approach is to use constitutive mathematical models that predict and describe the material's behavior. These models can avoid the expense and time required for experimental fatigue studies, but they also must be calibrated and validated using experimental data. The aim of this study is to validate a constitutive model to predict human meniscus' observed fatigue behavior in force-controlled loading. Three variations of constitutive models were applied to test each model's ability to model fatigue induced creep. These models included a viscoelastic damage model, a continuum damage mechanics model, and a viscoelastic model. Using a custom program, each models' parameters were fit to stretch-time plots from previously performed fatigue experiments of cadaveric human meniscus. The quality of fit for each model was then measured. The results of this study show that a viscoelastic damage formulation can effectively fit force-controlled fatigue behavior and, on average, performed the best of the three models presented. On average, the resulting NRMSE values for stretch at all creep stages were 0.22%, 2.03%, and 0.45% for the visco-damage, damage-only, and visco-only models, respectively. The requirement of including both viscoelasticity and damage to model all three creep stages indicates that viscoelasticity may be the driving factor for damage accumulation in fatigue loading. Further, the relatively low damage values, ranging from 0.05 to 0.2, right before exponential increases in stretch, indicate that failure may occur from fatigue loading without a considerable accumulation of damage. The validation results showed that the model could not completely represent pull to failure experiments when using material parameters that curve fit fatigue experiments. Still, they indicated that the combination of discontinuous CDM and viscoelasticity shows potential to model both fatigue and static loadings using a single formulation. To our knowledge, this is the first study to model force-controlled fatigue induced creep in the meniscus or any other soft tissue. This study's results can be utilized to further model force-controlled fatigue to predict and prevent meniscus tissue injuries.


2005 ◽  
Vol 297-300 ◽  
pp. 1291-1296 ◽  
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of this paper are to identify the impact damage behavior of plain-weave E-glass/epoxy composites and predict the fatigue life of the composites with impact-induced damage under constant amplitude loading. To identify these behaviors, the low velocity impact and fatigue after impact tests are performed for glass/epoxy composites having two types of fiber orientations. The impact damage behavior is dependent on the fiber orientation of the composites. The fatigue life of the impacted composites can be identified through the prediction model, which was proposed on the carbon/epoxy laminates by authors regardless of fiber orientations.


2010 ◽  
Vol 146-147 ◽  
pp. 926-936 ◽  
Author(s):  
How Ji Chen ◽  
Te Hung Liu ◽  
Chao Wei Tang

The present study experimentally investigated the pre-failure and post-fatigue behavior of reinforced concrete (RC) beams constructed with lightweight aggregate concrete (LWAC) in comparison with that constructed of normal weight concrete (NWC) of the same compressive strength (40 MPa). A total of twelve RC beams were tested under different fatigue loadings. Based on the experimental observations, the midspan total deflection measured in the fatigue testing consisted of the elastic and plastic components. The mechanismof the two deflection components developed with load cycles was different. The experimental results showed that the fatigue resistance of LWAC beams was better than that of NWC beams for the same fatigue loading levels. It was reflected in both the lower evolution of fatigue damage and the smaller growth of midspan residual deflection. After 2 million cycles, an average increase in residual load capacity of about 8% was found in the NWC beams, while that in the LWA beams remained virtually unchanged.


2020 ◽  
Vol 54 (27) ◽  
pp. 4215-4230
Author(s):  
Marc-Claudel Deluy ◽  
Mohamed Khay ◽  
Anh Dung Ngo ◽  
Martine Dubé ◽  
Rajamohan Ganesan

The objective of this work is to investigate the effects of environmental conditions on the axial fatigue behavior of a carbon/epoxy plain-weave laminate with an embedded flaw subjected to a partially reversed cyclic load (stress ratio R = −0.1) in tension–compression. This specific material is more commonly used in aerospace engineering for the manufacturing of aircraft structural parts, which are directly exposed to various environmental conditions during service. Specific environmental and loading conditions that are appropriate to simulate real-life conditions are considered to observe and collect information about the material's behavior. For the investigation, dry and wet coupons were submitted to room temperature, 82 and 121 ℃ under loading frequencies of 7 and 15 Hz. A maximum allowable strain increase criterion is used to monitor the flaw growth threshold or delamination onset, during fatigue testing. The ultrasonic imaging (C-scan) technique is used to verify and confirm the delamination onset. Results show that the delamination onset strain increase criterion, along with fatigue life, generally decreased as the operating temperature and humidity were increased and that frequency had little effect on the delamination onset fatigue life. The S– N curves obtained from the tension–compression fatigue data were then compared to those of a previous work carried out in tension–tension fatigue loading. Results show a clear degradation in the delamination onset fatigue life of the coupons tested under tension–tension cyclic loading when the minimum tensile component of the cyclic load was replaced with a compressive load of the same magnitude.


2020 ◽  
pp. 219256822091912
Author(s):  
Lukas Weiser ◽  
Gerd Huber ◽  
Kay Sellenschloh ◽  
Klaus Püschel ◽  
Michael M. Morlock ◽  
...  

Study Design: Biomechanical study. Objectives: Failure of pedicle screws is a major problem in spinal surgery not only postoperatively, but also intraoperatively. The aim of this study was to evaluate whether cement augmentation may restore mounting of initially loosened pedicle screws. Methods: A total of 14 osteoporotic or osteopenic human cadaveric vertebral bodies (L2)—according to quantitative computed tomography (QCT)—were instrumented on both sides by conventional pedicle screws and cement augmented on 1 side. In vitro fatigue loading (cranial-caudal sinusoidal, 0.5 Hz) with increasing peak force (100 N + 0.1 N/cycles) was applied until a screw head displacement of 5.4 mm (∼20°) was reached. After loosening, the nonaugmented screw was rescue augmented, and fatigue testing was repeated. Results: The fatigue load reached 207.3 N for the nonaugmented screws and was significantly ( P = .009) exceeded because of initial cement augmentation (300.6 N). The rescue augmentation after screw loosening showed a fatigue load of 370.1 N which was significantly higher ( P < .001) compared with the nonaugmented screws. The impact of bone density on fatigue strength decreased from the nonaugmented to the augmented to the rescue-augmented screws and shows the greatest effect of cement augmentation on fatigue strength at low bone density. Conclusions: Rescue augmentation leads to similar or higher fatigue strengths compared with those of the initially augmented screws. Therefore, the cement augmentation of initially loosened pedicle screws is a promising option to restore adequate screw stability.


2021 ◽  
Vol 2 (3) ◽  
pp. 493-511
Author(s):  
Loris Molent ◽  
Russell Wanhill

Corrosion-induced maintenance is a significant cost driver and availability degrader for aircraft structures. Although well-established analyses enable assessing the corrosion impact on structural integrity, this is not the case for fatigue nucleation and crack growth. This forces fleet managers to directly address detected corrosion to maintain flight safety. Corrosion damage occurs despite protection systems, which inevitably degrade. In particular, pitting corrosion is a common potential source of fatigue. Corrosion pits are discontinuities whose metrics can be used to predict the impact on the fatigue lives of structural components. However, a damage tolerance (DT) approach would be more useful and flexible. A potential hindrance to DT has been the assumption that corrosion-induced fatigue nucleation transitions to corrosion fatigue, about which little is known for service environments. Fortunately, several sources indicate that corrosion fatigue is rare for aircraft, and corrosion is largely confined to ground situations because aircraft generally fly at altitudes with low temperature and humidity Thus, it is reasonable to propose the decoupling of corrosion from the in-flight dynamic (fatigue) loading. This paper presents information to support this proposition, and provides an example of how a DT approach can allow deferring corrosion maintenance to a more opportune time.


2020 ◽  
Vol 14 (2) ◽  
pp. 311-325
Author(s):  
Eduard Relea ◽  
Varun Urundolil Kumaran ◽  
Alberto Sanchez Cebrian ◽  
Christian Gschnitzer-Bärnthaler ◽  
Markus Zogg ◽  
...  

Carbon fiber reinforced polymer (CFRP) utilization meets the requirements of stiffness, damping, and light weight for enhanced performance of machine tools. Stamping presses are expected to function for billions of cycles, resulting in the fatigue of the employed materials and parts. High-speed stamping presses, such as the Bruderer BSTA-200, should fulfil the increasing customer requirement of enhancing both quality and quantity of the delivered parts. Among the quickest presses currently available in the market, these BSTA presses can reach speeds up to 2000 strokes per minute (spm) with a stroke of 8 mm and still continue operating for many decades. For this project, new requirements were defined: a 25% increase of the stamping speed reaching up to 2500 spm, while maintaining the same stroke of 8 mm. The ram was redesigned by making use of CFRP, and because of its high stiffness and strength, it enabled a weight reduction of 65%. Owing to the stamping force of 200 kN and the impact of the stamping process, the material of the ram is highly strained. A major concern in utilizing CFRP in machine tools is the fatigue and change in material properties with increasing stress cycles. Therefore, the fatigue behavior of CFRP had to be validated in the very high cycle fatigue (VHCF) range. This was performed using a newly developed fatigue test bench. To complete 109 cycles within a few weeks, the testing occurred at the specimen’s resonance frequency with a constant and controlled strain of 0.1%. Aspects such as resonance frequency testing, heating of the specimen, and an accurate measuring system were considered. The specimens had to be designed and optimized for this type of testing, thus resulting in a cylindrical tube shape with a unidimensional (UD) arrangement of the fibers in longitudinal and transverse direction.


2018 ◽  
Vol 25 (4) ◽  
pp. 661-678
Author(s):  
Ata Hojatkashani ◽  
Mohammad Zaman Kabir

Abstract Numerous experimental studies have proven the efficiency of externally bonded fiber-reinforced polymer (FRP) systems on structural concrete elements, such as reinforced concrete (RC) beams. The current paper presents an analytical formulation of mechanical constants based on the results of experimental data, which were acquired from fatigue testing of intact and CFRP-retrofitted RC beams. A total of six scaled RC beams were prepared for the test, three of which were strengthened with carbon fiber-reinforced polymers (CFRPs). A specific finite element model coupled with experimental results from the proposed RC beams made it possible to compare the theoretical and experimental fatigue behavior of RC beams with and without composite reinforcement. The developed numerical model was then extended to evaluate a higher number of fatigue load cycles, as recommended by bridge codes. This was carried out to monitor the performance of CFRP-retrofitted RC beams in terms of flexural stiffness deterioration and damage propagation. The relationships presented in this paper were calibrated to the tested specimens. Moreover, they were useful for the design of RC and CFRP-retrofitted RC beams and for predicting fatigue performance, including the damage behavior of constituent materials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhihong Xiong ◽  
Engao Peng ◽  
Lianghua Zeng ◽  
Qirong Xu

Some components made of 316L stainless steel in nuclear reactors are connected by welding, and these are under giga-cycle fatigue loading. Therefore, the giga-cycle fatigue behavior of 316L weldments, which are fabricated by Laser Beam Welding (LBW) and Gas Tungsten Arc Welding (GTAW), were investigated using an ultrasonic fatigue testing system. The results indicate that the fatigue strength of LBW-made weldments is almost the same as that of GTAW-made weldments even though the microstructure and mechanical properties of the weldments are different. For the LBW-made specimens, the LBW-induced internal pores with a diameter range of about 89–270 μm were observed in the fracture surface. However, an obvious decrease in fatigue life was not observed in such cases. For the GTAW-made specimens, the quality requirement of the weld seam has to be more strict to prevent fatigue strength from decreasing. The fatigue failure mode of the GTAW-made specimens is the same as that of LBW-made specimens in the high-cycle fatigue regime but different in the giga-cycle fatigue regime.


2017 ◽  
Vol 754 ◽  
pp. 39-42 ◽  
Author(s):  
Sergio Baragetti ◽  
Nedunchezhian Srinivasan ◽  
Ravi Kumar

Ti-6Al-4V alloy in solutionized and aged condition was subjected to axial fatigue testing in air and corrosive environments respectively. Severity of the methanol damage as evidenced through fractographic studies, corroborates loss in fatigue strength of samples tested in methanol environment in contrast to samples tested in air. Samples subjected to fatigue loading in NaCl environment revealed extensive secondary cracks along alpha grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document